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Introduction to compressive sensing
Introduction to compressive sensing. This course introduces the basic
concepts in compressive sensing. We overview the concepts of sparsity,
compressibility, and transform coding. We then review applications of
sparsity in several signal processing problems such as sparse recovery,
model selection, data coding, and error correction. We overview the key
results in these fields, focusing primarily on both theory and algorithms for
sparse recovery. We also discuss applications of compressive sensing in
communications, biosensing, medical imaging, and sensor networks.

We are in the midst of a digital revolution that is driving the development
and deployment of new kinds of sensing systems with ever-increasing
fidelity and resolution. The theoretical foundation of this revolution is the
pioneering work of Kotelnikov, Nyquist, Shannon, and Whittaker on
sampling continuous-time band-limited signals [link], [link], [link], [link].
Their results demonstrate that signals, images, videos, and other data can be
exactly recovered from a set of uniformly spaced samples taken at the so-
called Nyquist rate of twice the highest frequency present in the signal of
interest. Capitalizing on this discovery, much of signal processing has
moved from the analog to the digital domain and ridden the wave of
Moore's law. Digitization has enabled the creation of sensing and
processing systems that are more robust, flexible, cheaper and,
consequently, more widely-used than their analog counterparts.

As a result of this success, the amount of data generated by sensing systems
has grown from a trickle to a torrent. Unfortunately, in many important and
emerging applications, the resulting Nyquist rate is so high that we end up
with far too many samples. Alternatively, it may simply be too costly, or
even physically impossible, to build devices capable of acquiring samples at
the necessary rate. Thus, despite extraordinary advances in computational
power, the acquisition and processing of signals in application areas such as
imaging, video, medical imaging, remote surveillance, spectroscopy, and
genomic data analysis continues to pose a tremendous challenge.

To address the logistical and computational challenges involved in dealing
with such high-dimensional data, we often depend on compression, which
aims at finding the most concise representation of a signal that is able to



achieve a target level of acceptable distortion. One of the most popular
techniques for signal compression is known as transform coding, and
typically relies on finding a basis or frame that provides sparse or
compressible representations for signals in a class of interest. By a sparse
representation, we mean that for a signal of length N , we can represent it
with K ≪ N  nonzero coefficients; by a compressible representation, we
mean that the signal is well-approximated by a signal with only K nonzero
coefficients. Both sparse and compressible signals can be represented with
high fidelity by preserving only the values and locations of the largest
coefficients of the signal. This process is called sparse approximation, and
forms the foundation of transform coding schemes that exploit signal
sparsity and compressibility, including the JPEG, JPEG2000, MPEG, and
MP3 standards.

Leveraging the concept of transform coding, compressive sensing (CS) has
emerged as a new framework for signal acquisition and sensor design.
CS
enables a potentially large reduction in the sampling and computation costs
for sensing signals that have a sparse or compressible representation. The
Nyquist-Shannon sampling theorem states that a certain minimum number
of samples is required in order to perfectly capture an arbitrary bandlimited
signal, but when the signal is sparse in a known basis we can vastly reduce
the number of measurements that need to be stored. Consequently, when
sensing sparse signals we might be able to do better than suggested by
classical results. This is the fundamental idea behind CS: rather than first
sampling at a high rate and then compressing the sampled data, we would
like to find ways to directly sense the data in a compressed form — i.e., at a
lower sampling rate. The field of CS grew out of the work of Emmanuel
Candès, Justin Romberg, and Terence Tao and of David Donoho, who
showed that a finite-dimensional signal having a sparse or compressible
representation can be recovered from a small set of linear, nonadaptive
measurements [link], [link], [link]. The design of these measurement
schemes and their extensions to practical data models and acquisition
schemes are one of the most central challenges in the field of CS.

Although this idea has only recently gained significant attraction in the
signal processing community, there have been hints in this direction dating
back as far as the eighteenth century. In 1795, Prony proposed an algorithm



for the estimation of the parameters associated with a small number of
complex exponentials sampled in the presence of noise [link]. The next
theoretical leap came in the early 1900's, when Carathéodory showed that a
positive linear combination of any K sinusoids is uniquely determined by
its value at t = 0 and at any other 2K points in time [link], [link]. This
represents far fewer samples than the number of Nyquist-rate samples when
K is small and the range of possible frequencies is large. In the 1990's, this
work was generalized by George, Gorodnitsky, and Rao, who studied
sparsity in the context of biomagnetic imaging and other contexts [link],
[link], and by Bressler and Feng, who proposed a sampling scheme for
acquiring certain classes of signals consisting of K components with
nonzero bandwidth (as opposed to pure sinusoids) [link], [link]. In the early
2000's Vetterli, Marziliano, and Blu proposed a sampling scheme for non-
bandlimited signals that are governed by only K parameters, showing that
these signals can be sampled and recovered from just 2K samples [link].

A related problem focuses on recovery of a signal from partial observation
of its Fourier transform. Beurling proposed a method for extrapolating these
observations to determine the entire Fourier transform [link]. One can show
that if the signal consists of a finite number of impulses, then Beurling's
approach will correctly recover the entire Fourier transform (of this non-
bandlimited signal) from any sufficiently large piece of its Fourier
transform. His approach — to find the signal with smallest ℓ1 norm among
all signals agreeing with the acquired Fourier measurements — bears a
remarkable resemblance to some of the algorithms used in CS.

More recently, Candès, Romberg, Tao [link], [link], [link], [link], [link], and
Donoho [link] showed that a signal having a sparse representation can be
recovered exactly from a small set of linear, nonadaptive measurements.
This result suggests that it may be possible to sense sparse signals by taking
far fewer measurements, hence the name compressive sensing. Note,
however, that CS differs from classical sampling in two important respects.
First, rather than sampling the signal at specific points in time, CS systems
typically acquire measurements in the form of inner products between the
signal and more general test functions. We will see throughout this course
that randomness often plays a key role in the design of these test functions.
Second, the two frameworks differ in the manner in which they deal with



signal recovery, i.e., the problem of recovering the original signal from the
compressive measurements. In the Nyquist-Shannon framework, signal
recovery is achieved through cardinal sine (sinc) interpolation — a linear
process that requires little computation and has a simple interpretation.

CS has already had notable impact on several applications. One example is
medical imaging, where it has enabled speedups by a factor of seven in
pediatric MRI while preserving diagnostic quality [link]. Moreover, the
broad applicability of this framework has inspired research that extends the
CS framework by proposing practical implementations for numerous
applications, including sub-Nyquist analog-to-digital converters (ADCs),
compressive imaging architectures, and compressive sensor networks.

This course introduces the basic concepts in compressive sensing. We
overview the concepts of sparsity, compressibility, and transform coding.
We overview the key results in the field, beginning by focusing primarily
on the theory of sensing matrix design, ℓ1-minimization, and alternative
algorithms for sparse recovery. We then review applications of sparsity in
several signal processing problems such as sparse regression and model
selection, error correction, group testing, and compressive inference. We
also discuss applications of compressive sensing in analog-to-digital
conversion, biosensing, conventional and hyperspectral imaging, medical
imaging, and sensor networks.
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Introduction to vector spaces
This module provides a brief review of some of the key concepts in vector
spaces that will be required in developing the theory of compressive sensing.

For much of its history, signal processing has focused on signals produced by
physical systems. Many natural and man-made systems can be modeled as
linear. Thus, it is natural to consider signal models that complement this kind of
linear structure. This notion has been incorporated into modern signal
processing by modeling signals as vectors living in an appropriate vector space.
This captures the linear structure that we often desire, namely that if we add two
signals together then we obtain a new, physically meaningful signal. Moreover,
vector spaces allow us to apply intuitions and tools from geometry in R3, such
as lengths, distances, and angles, to describe and compare signals of interest.
This is useful even when our signals live in high-dimensional or infinite-
dimensional spaces.

Throughout this course, we will treat signals as real-valued functions having
domains that are either continuous or discrete, and either infinite or finite. These
assumptions will be made clear as necessary in each chapter. In this course, we
will assume that the reader is relatively comfortable with the key concepts in
vector spaces. We now provide only a brief review of some of the key concepts
in vector spaces that will be required in developing the theory of compressive
sensing (CS). For a more thorough review of vector spaces see this introductory
course in Digital Signal Processing.

We will typically be concerned with normed vector spaces, i.e., vector spaces
endowed with a norm. In the case of a discrete, finite domain, we can view our
signals as vectors in an N-dimensional Euclidean space, denoted by RN . When
dealing with vectors in RN , we will make frequent use of the ℓp norms, which
are defined for p ∈ [1, ∞] as
Equation:

∥x∥p =

In Euclidean space we can also consider the standard inner product in RN ,
which we denote

(∑N
i=1 |xi|

p)
1
p

, p ∈ [1, ∞);

max
i=1,2,...,N

|xi|, p = ∞.

https://cnx.org/content/col11133@latest
https://cnx.org/content/col11172@latest


Equation:

⟨x, z⟩ = zT x =
N

∑
i=1

xizi.

This inner product leads to the ℓ2 norm: ∥x∥2 = √⟨x, x⟩.

In some contexts it is useful to extend the notion of ℓp norms to the case where 
p < 1. In this case, the “norm” defined in [link] fails to satisfy the triangle
inequality, so it is actually a quasinorm. We will also make frequent use of the
notation ∥x∥0 := |supp (x)|, where supp (x) = {i : xi ≠ 0} denotes the
support of x and |supp(x)| denotes the cardinality of supp(x). Note that ∥⋅∥0
is not even a quasinorm, but one can easily show that
Equation:

∥x∥0 =lim
p→0

∥x∥p
p = |supp (x)|,

justifying this choice of notation. The ℓp (quasi-)norms have notably different
properties for different values of p. To illustrate this, in [link] we show the unit
sphere, i.e., {x : ∥x∥p = 1}, induced by each of these norms in R2. Note that

for p < 1 the corresponding unit sphere is nonconvex (reflecting the
quasinorm's violation of the triangle inequality).

Unit spheres in R2 for the ℓp norms with p = 1, 2, ∞, and for the ℓp

Unit sphere
for ℓ1 norm

Unit sphere
for ℓ2 norm

Unit sphere
for ℓ∞ norm

Unit sphere for 
ℓp quasinorm



We typically use norms as a measure of the strength of a signal, or the size of an
error. For example, suppose we are given a signal x ∈ R2 and wish to
approximate it using a point in a one-dimensional affine space A. If we measure
the approximation error using an ℓp norm, then our task is to find the x̂ ∈ A that
minimizes ∥x − x̂∥p. The choice of p will have a significant effect on the
properties of the resulting approximation error. An example is illustrated in
[link]. To compute the closest point in A to x using each ℓp norm, we can
imagine growing an ℓp sphere centered on x until it intersects with A. This will
be the point x̂ ∈ A that is closest to x in the corresponding ℓp norm. We observe
that larger p tends to spread out the error more evenly among the two
coefficients, while smaller p leads to an error that is more unevenly distributed
and tends to be sparse. This intuition generalizes to higher dimensions, and
plays an important role in the development of CS theory.

quasinorm with p = 1
2 .

Best approximation of a point in R2 by a a one-dimensional subspace using
the ℓp norms for p = 1, 2, ∞, and the ℓp quasinorm with p = 1

2 .

Approximation
in ℓ1 norm

Approximation
in ℓ2 norm

Approximation
in ℓ∞ norm

Approximation
in ℓp

quasinorm



Bases and frames
This module provides an overview of bases and frames in finite-
dimensional Hilbert spaces.

A set Ψ = {ψi}i∈I  is called a basis for a finite-dimensional vector space 
V  if the vectors in the set span V  and are linearly independent. This implies
that each vector in the space can be represented as a linear combination of
this (smaller, except in the trivial case) set of basis vectors in a unique
fashion. Furthermore, the coefficients of this linear combination can be
found by the inner product of the signal and a dual set of vectors. In discrete
settings, we will only consider real finite-dimensional Hilbert spaces where 
V = RN  and I = {1, . . . ,N}.

Mathematically, any signal x ∈ R
N  may be expressed as,

Equation:

x = ∑
i∈I

aiψ̃i,

where our coefficients are computed as ai = ⟨x,ψi⟩ and {ψ̃i}
i∈I

 are the

vectors that constitute our dual basis. Another way to denote our basis and
its dual is by how they operate on x. Here, we call our dual basis Ψ̃  our
synthesis basis (used to reconstruct our signal by [link]) and Ψ  is our
analysis basis.

An orthonormal basis (ONB) is defined as a set of vectors Ψ = {ψi}i∈I

that form a basis and whose elements are orthogonal and unit norm. In other
words, ⟨ψi,ψj⟩ = 0 if i ≠ j and one otherwise. In the case of an ONB, the
synthesis basis is simply the Hermitian adjoint of analysis basis (Ψ̃ = Ψ T ).

It is often useful to generalize the concept of a basis to allow for sets of
possibly linearly dependent vectors, resulting in what is known as a frame.
More formally, a frame is a set of vectors {Ψi}

n
i=1 in Rd, d < n

corresponding to a matrix Ψ ∈ R
d×n, such that for all vectors x ∈ R

d,
Equation:



A∥x∥2
2 ≤ ∥Ψ Tx∥

2
2 ≤ B∥x∥2

2

with 0 < A ≤ B < ∞. Note that the condition A > 0 implies that the
rows of Ψ  must be linearly independent. When A is chosen as the largest
possible value and B as the smallest for these inequalities to hold, then we
call them the (optimal) frame bounds. If A and B can be chosen as A = B,
then the frame is called A-tight, and if A = B = 1, then Ψ  is a Parseval
frame. A frame is called equal-norm, if there exists some λ > 0 such that 
∥Ψi∥2 = λ for all i = 1, ...,N , and it is unit-norm if λ = 1. Note also that
while the concept of a frame is very general and can be defined in infinite-
dimensional spaces, in the case where Ψ  is a d × N  matrix A and B simply
correspond to the smallest and largest eigenvalues of ΨΨ T , respectively.

Frames can provide richer representations of data due to their redundancy:
for a given signal x, there exist infinitely many coefficient vectors α such
that x = Ψα. In particular, each
choice of a dual frame Ψ̃  provides a
different choice of
a coefficient vector α. More formally, any frame
satisfying
Equation:

ΨΨ̃ T = Ψ̃Ψ T = I

is called an (alternate) dual frame. The particular choice Ψ̃ = (ΨΨ T)
−1
Ψ  is

referred to as the canonical dual frame. It is also known as the Moore-
Penrose pseudoinverse. Note that since A > 0 requires Ψ  to have linearly
independent rows, we ensure that ΨΨ T  is invertible, so that Ψ̃  is well-
defined. Thus, one way to obtain a set of feasible coefficients is via
Equation:

αd = Ψ T(ΨΨ T)
−1
x.

One can show that this sequence is the smallest coefficient sequence in ℓ2

norm, i.e., ∥αd∥2 ≤ ∥α∥2 for all α such that x = Ψα.



Finally, note that in the sparse approximation literature, it is also common
for a basis or frame to be referred to as a dictionary or overcomplete
dictionary respectively, with the dictionary elements being called atoms.



Sparse representations
This module provides an overview of sparsity and sparse representations,
giving examples for both 1-D and 2-D signals.

Transforming a signal to a new basis or frame may allow us to represent a
signal more concisely. The resulting compression is useful for reducing data
storage and data transmission, which can be quite expensive in some
applications. Hence, one might wish to simply transmit the analysis
coefficients obtained in our basis or frame expansion instead of its high-
dimensional correlate. In cases where the number of non-zero coefficients is
small, we say that we have a sparse representation. Sparse signal models
allow us to achieve high rates of compression and in the case of
compressive sensing, we may use the knowledge that our signal is sparse in
a known basis or frame to recover our original signal from a small number
of measurements. For sparse data, only the non-zero coefficients need to be
stored or transmitted in many cases; the rest can be assumed to be zero).

Mathematically, we say that a signal x is K-sparse when it has at most K
nonzeros, i.e., ∥x∥0 ≤ K. We let
Equation:

ΣK = {x : ∥x∥0 ≤ K}

denote the set of all K-sparse signals. Typically, we will be dealing with
signals that are not themselves sparse, but which admit a sparse
representation in some basis Ψ . In this case we will still refer to x as being 
K-sparse, with the understanding that we can express x as x = Ψα where 
∥ α ∥0 ≤ K.

Sparsity has long been exploited in signal processing and approximation
theory for tasks such as compression [link], [link], [link] and
denoising [link], and in statistics and learning theory as a method for
avoiding overfitting [link]. Sparsity also figures prominently in the theory
of statistical estimation and model selection [link], [link], in the study of the
human visual system [link], and has been exploited heavily in image
processing tasks, since the multiscale wavelet transform [link] provides



nearly sparse representations for natural images. Below, we briefly describe
some one-dimensional (1-D) and two-dimensional (2-D) examples.

1-D signal models

We will now present an example of three basis expansions that yield
different levels of sparsity for the same signal. A simple periodic signal is
sampled and represented as a periodic train of weighted impulses (see
[link]). One can interpret sampling as a basis expansion where our elements
in our basis are impulses placed at periodic points along the time axis. We
know that in this case, our dual basis consists of sinc functions used to
reconstruct our signal from discrete-time samples. This representation
contains many non-zero coefficients, and due to the signal's periodicity,
there are many redundant measurements. Representing the signal in the
Fourier basis, on the other hand, requires only two non-zero basis vectors,
scaled appropriately at the positive and negative frequencies (see [link]).
Driving the number of coefficients needed even lower, we may apply the
discrete cosine transform (DCT) to our signal, thereby requiring only a
single non-zero coefficient in our expansion (see [link]). The DCT equation
is Xk = ∑N−1

n=0 xn cos ( π
N
(n + 1

2 )k) with k = 0, ⋯ , N − 1, xn the
input signal, and N the length of the transform.

Cosine signal in three representations: (a) Train of impulses (b)
Fourier basis (c) DCT basis



2-D signal models

This same concept can be extended to 2-D signals as well. For instance, a
binary picture of a nighttime sky is sparse in the standard pixel domain
because most of the pixels are zero-valued black pixels. Likewise, natural
images are characterized by large smooth or textured regions and relatively
few sharp edges. Signals with this structure are known to be very nearly
sparse when represented using a multiscale wavelet transform [link]. The
wavelet transform consists of recursively dividing the image into its low-
and high-frequency components. The lowest frequency components provide
a coarse scale approximation of the image, while the higher frequency
components fill in the detail and resolve edges. What we see when we
compute a wavelet transform of a typical natural image, as shown in [link],
is that most coefficients are very small. Hence, we can obtain a good
approximation of the signal by setting the small coefficients to zero, or
thresholding the coefficients, to obtain a K-sparse representation. When
measuring the approximation error using an ℓp norm, this procedure yields
the best K-term approximation of the original signal, i.e., the best
approximation of the signal using only K basis elements.[footnote]
Thresholding yields the best K-term approximation of a signal with respect
to an orthonormal basis. When redundant frames are used, we must rely on
sparse approximation algorithms like those described later in this
course [link], [link].



Sparsity results through this decomposition because in most natural images
most pixel values vary little from their neighbors. Areas with little contrast
difference can be represent with low frequency wavelets. Low frequency
wavelets are created through stretching a mother wavelet and thus
expanding it in space. On the other hand, discontinuities, or edges in the
picture, require high frequency wavelets, which are created through
compacting a mother wavelet. At the same time, the transitions are
generally limited in space, mimicking the properties of the high frequency
compacted wavelet. See "Compressible signals" for an example.

Sparse representation of an image via a multiscale wavelet transform.
(a) Original image. (b) Wavelet representation. Large coefficients are

represented by light pixels, while small coefficients are represented by
dark pixels. Observe that most of the wavelet coefficients are close to

zero.



Compressible signals
This module describes compressible signals, i.e., signals that can be well-
approximated by sparse signals.

Compressibility and K-term approximation

An important assumption used in the context of compressive sensing (CS)
is that signals exhibit a degree of structure. So far the only structure we
have considered is sparsity, i.e., the number of non-zero values the signal
has when representation in an orthonormal basis Ψ . The signal is considered
sparse if it has only a few nonzero values in comparison with its overall
length.

Few structured signals are truly sparse; rather they are compressible. A
signal is compressible if its sorted coefficient magnitudes in Ψ  decay
rapidly. To consider this mathematically, let x be a signal which is
compressible in the basis Ψ:
Equation:

x = Ψα,

where α are the coefficients of x in the basis Ψ . If x is compressible, then
the magnitudes of the sorted coefficients αs observe a power law decay:
Equation:

αs|≤ C1s
−q, s = 1, 2, . . . .

We define a signal as being compressible if it obeys this power law decay.
The larger q is, the faster the magnitudes decay, and the more compressible
a signal is. [link] shows images that are compressible in different bases.∣



Because the magnitudes of their coefficients decay so rapidly, compressible
signals can be represented well by K ≪ N  coefficients. The best K-term
approximation of a signal is the one in which the K largest coefficients are
kept, with the rest being zero. The error between the true signal and its K
term approximation is denoted the K-term approximation error σK (x),
defined as
Equation:

σK (x) =arg min
α∈ΣK

∥ x − Ψα ∥2.

For compressible signals, we can establish a bound with power law decay
as follows:
Equation:

σK (x) ≤ C2K
1/2−s.

The image in the upper left is a signal that is compressible in space.
When the pixel values are sorted from largest to smallest, there is a

sharp descent. The image in the lower left is not compressible in
space, but it is compressible in wavelets since its wavelet coefficients

exhibit a power law decay.



In fact, one can show that σK(x)2 will decay as K−r if and only if the
sorted coefficients αi decay as i−r+1/2 [link].
[link] shows an image and its 
K-term approximation.

Compressibility and ℓp spaces

A signal's compressibility is related to the ℓp space to which the signal
belongs. An infinite sequence x(n) is an element of an ℓp space for a
particular value of p if and only if its ℓp norm is finite:
Equation:

Sparse approximation of a natural image. (a) Original image.
(b) Approximation of image obtained by keeping only the largest 10%
of the wavelet coefficients. Because natural images are compressible

in a wavelet domain, approximating this image it in terms of its largest
wavelet coefficients maintains good fidelity.



∥ x ∥p = (∑
i

|xi|
p)

1
p

< ∞.

The smaller p is, the faster the sequence's values must decay in order to
converge so that the norm is bounded. In the limiting case of p = 0, the
“norm” is actually a pseudo-norm and counts the number of non-zero
values. As p decreases, the size of its corresponding ℓp space also decreases.
[link] shows various ℓp unit balls (all sequences whose ℓp norm is 1) in 3
dimensions.

Suppose that a signal is sampled infinitely finely, and call it x[n]. In order
for this sequence to have a bounded ℓp norm, its coefficients must have a
power-law rate of decay with q > 1/p. Therefore a signal which is in an ℓp

space with p ≤ 1 obeys a power law decay, and is therefore compressible.

As the value of p decreases, the size of the corresponding ℓp space also
decreases. This can be seen visually when comparing the the size of

the spaces of signals, in three dimensions, for which the ℓp norm is less
than or equal to one. The volume of these ℓp “balls” decreases with p.



Sensing matrix design
This module provides an overview of the sensing matrix design problem in
compressive sensing.

In order to make the discussion more concrete, we will restrict our attention
to the standard finite-dimensional compressive sensing (CS) model.
Specifically, given a signal x ∈ R

N, we consider measurement systems that
acquire M  linear measurements. We can represent this process
mathematically as
Equation:

y = Φx,

where Φ is an M × N  matrix and y ∈ RM. The matrix Φ represents a
dimensionality reduction, i.e., it maps RN, where N  is generally large, into 
R

M, where M  is typically much smaller than N . Note that in the standard
CS framework we assume that the measurements are non-adaptive,
meaning that the rows of Φ are fixed in advance and do not depend on the
previously acquired measurements. In certain settings adaptive
measurement schemes can lead to significant performance gains.

Note that although the standard CS framework assumes that x is a finite-
length vector with a discrete-valued index (such as time or space), in
practice we will often be interested in designing measurement systems for
acquiring continuously-indexed signals such as continuous-time signals or
images. For now we will simply think of x as a finite-length window of
Nyquist-rate samples, and we temporarily ignore the issue of how to
directly acquire compressive measurements without first sampling at the
Nyquist rate.

There are two main theoretical questions in CS. First, how should we
design the sensing matrix Φ to ensure that it preserves the information in
the signal x? Second, how can we recover the original signal x from
measurements y? In the case where our data is sparse or compressible, we
will see that we can design matrices Φ with M ≪ N  that ensure that we
will be able to recover the original signal accurately and efficiently using a
variety of practical algorithms.



We begin in this part of the course by first addressing the question of how
to design the sensing matrix Φ. Rather than directly proposing a design
procedure, we instead consider a number of desirable properties that we
might wish Φ to have (including the null space property, the restricted
isometry property, and bounded coherence). We then provide some
important examples of matrix constructions that satisfy these properties.

https://cnx.org/content/col11133@latest


Null space conditions
This module introduces the spark and the null space property, two common
conditions related to the null space of a measurement matrix that ensure the
success of sparse recovery algorithms. Furthermore, the null space property is
shown to be a necessary condition for instance optimal or uniform recovery
guarantees.

A natural place to begin in establishing conditions on Φ in the context of
designing a sensing matrix is by considering the null space of Φ, denoted
Equation:

N (Φ) = {z : Φz = 0}.

If we wish to be able to recover all sparse signals x from the measurements 
Φx, then it is immediately clear that for any pair of distinct vectors 
x, x′ ∈ ΣK = {x : ∥x∥0 ≤ K}, we must have Φx ≠ Φx′, since otherwise it
would be impossible to distinguish x from x′ based solely on the
measurements y. More formally, by observing that if Φx = Φx′ then 
Φ(x − x′) = 0 with x − x′ ∈ Σ2K, we see that Φ uniquely represents all 
x ∈ ΣK if and only if N (Φ) contains no vectors in Σ2K. There are many
equivalent ways of characterizing this property; one of the most common is
known as the spark [link].

The spark

The spark of a given matrix Φ is the smallest number of columns of Φ
that are linearly dependent.

This definition allows us to pose the following straightforward guarantee.
(Corollary 1 of [link])

For any vector y ∈ RM, there exists at most one signal x ∈ ΣK such that 
y = Φx if and only if spark(Φ) > 2K.

We first assume that, for any y ∈ RM, there exists at most one signal x ∈ ΣK

such that y = Φx. Now suppose for the sake of a contradiction that 
spark(Φ) ≤ 2K. This means that there exists some set of at most 2K



columns that are linearly dependent, which in turn implies that there exists an 
h ∈ N (Φ) such that h ∈ Σ2K. In this case, since h ∈ Σ2K we can write 
h = x − x′, where x, x′ ∈ ΣK. Thus, since h ∈ N (Φ) we have that 
Φ(x − x′) = 0 and hence Φx = Φx′. But this contradicts our assumption that
there exists at most one signal x ∈ ΣK such that y = Φx. Therefore, we must
have that spark(Φ) > 2K.

Now suppose that spark(Φ) > 2K. Assume that for some y there exist 
x, x′ ∈ ΣK such that y = Φx = Φx′. We therefore have that Φ(x − x′) = 0.
Letting h = x − x′, we can write this as Φh = 0. Since spark(Φ) > 2K, all
sets of up to 2K columns of Φ are linearly independent, and therefore h = 0.
This in turn implies x = x′, proving the theorem.

It is easy to see that spark(Φ) ∈ [2, M + 1]. Therefore, [link] yields the
requirement M ≥ 2K.

The null space property

When dealing with exactly sparse vectors, the spark provides a complete
characterization of when sparse recovery is possible. However, when dealing
with approximately sparse signals we must introduce somewhat more
restrictive conditions on the null space of Φ [link]. Roughly speaking, we
must also ensure that N (Φ) does not contain any vectors that are too
compressible in addition to vectors that are sparse. In order to state the formal
definition we define the following notation that will prove to be useful
throughout much of this course. Suppose that Λ ⊂ {1, 2, ⋯ , N} is a subset
of indices and let Λc = {1, 2, ⋯ , N} ∖ Λ. By xΛ we typically mean the
length N  vector obtained by setting the entries of x indexed by Λc to zero.
Similarly, by ΦΛ we typically mean the M × N  matrix obtained by setting
the columns of Φ indexed by Λc to zero.[footnote]
We note that this notation will occasionally be abused to refer to the length 
|Λ| vector obtained by keeping only the entries corresponding to Λ or the 
M × |Λ| matrix obtained by only keeping the columns corresponding to Λ.
The usage should be clear from the context, but typically there is no
substantive difference between the two.
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A matrix Φ satisfies the null space property (NSP) of order K if there
exists a constant C > 0 such that,
Equation:

∥hΛ∥2 ≤ C
∥hΛc∥1

√K

holds for all h ∈ N (Φ) and for all Λ such that |Λ| ≤ K.

The NSP quantifies the notion that vectors in the null space of Φ should not
be too concentrated on a small subset of indices. For example, if a vector h is
exactly K-sparse, then there exists a Λ such that ∥hΛc∥1 = 0 and hence [link]
implies that hΛ = 0 as well. Thus, if a matrix Φ satisfies the NSP then the
only K-sparse vector in N (Φ) is h = 0.

To fully illustrate the implications of the NSP in the context of sparse
recovery, we now briefly discuss how we will measure the performance of
sparse recovery algorithms when dealing with general non-sparse x. Towards
this end, let Δ : RM → R

N represent our specific recovery method. We will
focus primarily on guarantees of the form
Equation:

∥Δ(Φx) − x∥2 ≤ C
σK(x)1

√K

for all x, where we recall that
Equation:

σK(x)p = min
x̂∈ΣK

∥x − x̂∥p.

This guarantees exact recovery of all possible K-sparse signals, but also
ensures a degree of robustness to non-sparse signals that directly depends on
how well the signals are approximated by K-sparse vectors. Such guarantees
are called instance-optimal since they guarantee optimal performance for each
instance of x [link]. This distinguishes them from guarantees that only hold



for some subset of possible signals, such as sparse or compressible signals —
the quality of the guarantee adapts to the particular choice of x. These are also
commonly referred to as uniform guarantees since they hold uniformly for all 
x.

Our choice of norms in [link] is somewhat arbitrary. We could easily measure
the reconstruction error using other ℓp norms. The choice of p, however, will
limit what kinds of guarantees are possible, and will also potentially lead to
alternative formulations of the NSP. See, for instance, [link]. Moreover, the
form of the right-hand-side of [link] might seem somewhat unusual in that we
measure the approximation error as σK(x)1/√K rather than simply
something like σK(x)2. However, we will see later in this course that such a
guarantee is actually not possible without taking a prohibitively large number
of measurements, and that [link] represents the best possible guarantee we can
hope to obtain (see "Instance-optimal guarantees revisited").

Later in this course, we will show that the NSP of order 2K is sufficient to
establish a guarantee of the form [link] for a practical recovery algorithm (see
"Noise-free signal recovery"). Moreover, the following adaptation of a
theorem in [link] demonstrates that if there exists any recovery algorithm
satisfying [link], then Φ must necessarily satisfy the NSP of order 2K.
(Theorem 3.2 of [link])

Let Φ : RN → R
M denote a sensing matrix and Δ : RM → R

N denote an
arbitrary recovery algorithm. If the pair (Φ, Δ) satisfies [link] then Φ satisfies
the NSP of order 2K.

Suppose h ∈ N (Φ) and let Λ be the indices corresponding to the 2K largest
entries of h. We next split Λ into Λ0 and Λ1, where |Λ0 |=|Λ1|= K. Set 
x = hΛ1

+ hΛc and x′ = −hΛ0
, so that h = x − x′. Since by construction 

x′ ∈ ΣK, we can apply [link] to obtain x′ = Δ (Φx′). Moreover, since 
h ∈ N (Φ), we have
Equation:

Φh = Φ(x − x′) = 0

so that Φx′ = Φx. Thus, x′ = Δ (Φx). Finally, we have that
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Equation:

∥hΛ∥2 ≤ ∥h∥2 = ∥x − x′∥2 = ∥x − Δ(Φx)∥2 ≤ C
σK(x)1

√K
= √2C

∥hΛc∥1

√2K
,

where the last inequality follows from [link].



The restricted isometry property
In this module we introduce the restricted isometry property (RIP) and discuss its
role in compressive sensing. In particular, we describe the relationship between the
RIP and the concept of stability in the context of sparse signal acquisition. We also
provide a simple lower bound on the number of measurements necessary for a
matrix to satisfy the RIP.

The null space property (NSP) is both necessary and sufficient for establishing
guarantees of the form
Equation:

∥Δ(Φx) − x∥2 ≤ C
σK(x)1

√K
,

but these guarantees do not account for noise. When the measurements are
contaminated with noise or have been corrupted by some error such as
quantization, it will be useful to consider somewhat stronger conditions. In [link],
Candès and Tao introduced the following isometry condition on matrices Φ and
established its important role in compressive sensing (CS).

A matrix Φ satisfies the restricted isometry property (RIP) of order K if there
exists a δK ∈ (0, 1) such that
Equation:

(1 − δK)∥x∥2
2 ≤ ∥Φx∥2

2 ≤ (1 + δK)∥x∥2
2,

holds for all x ∈ ΣK = {x : ∥x∥0 ≤ K}.

If a matrix Φ satisfies the RIP of order 2K, then we can interpret [link] as saying
that Φ approximately preserves the distance between any pair of K-sparse vectors.
This will clearly have fundamental implications concerning robustness to noise.

It is important to note that in our definition of the RIP we assume bounds that are
symmetric about 1, but this is merely for notational convenience. In practice, one
could instead consider arbitrary bounds
Equation:

α∥x∥2
2 ≤ ∥Φx∥2

2 ≤ β∥x∥2
2



where 0 < α ≤ β < ∞. Given any such bounds, one can always scale Φ so that it
satisfies the symmetric bound about 1 in [link]. Specifically, multiplying Φ by 
√2/(β + α) will result in an Φ̃ that satisfies [link] with constant 
δK = (β − α)/ (β + α). We will not explicitly show this, but one can check that
all of the theorems in this course based on the assumption that Φ satisfies the RIP
actually hold as long as there exists some scaling of Φ that satisfies the RIP. Thus,
since we can always scale Φ to satisfy [link], we lose nothing by restricting our
attention to this simpler bound.

Note also that if Φ satisfies the RIP of order K with constant δK , then for any 
K ′ < K we automatically have that Φ satisfies the RIP of order K ′ with constant 
δK ′ ≤ δK . Moreover, in [link] it is shown that if Φ satisfies the RIP of order K
with a sufficiently small constant, then it will also automatically satisfy the RIP of
order γK for certain γ, albeit with a somewhat worse constant.
(Corollary 3.4 of [link])

Suppose that Φ satisfies the RIP of order K with constant δK . Let γ be a positive
integer. Then Φ satisfies the RIP of order K ′ = γ⌊ K

2
⌋ with constant δK ′ < γ ⋅ δK ,

where ⌊⋅⌋ denotes the floor operator.

This lemma is trivial for γ = 1, 2, but for γ ≥ 3 (and K ≥ 4) this allows us to
extend from RIP of order K to higher orders. Note however, that δK  must be
sufficiently small in order for the resulting bound to be useful.

The RIP and stability

We will see later in this course that if a matrix Φ satisfies the RIP, then this is
sufficient for a variety of algorithms to be able to successfully recover a sparse
signal from noisy measurements. First, however, we will take a closer look at
whether the RIP is actually necessary. It should be clear that the lower bound in the
RIP is a necessary condition if we wish to be able to recover all sparse signals x
from the measurements Φx for the same reasons that the NSP is necessary. We can
say even more about the necessity of the RIP by considering the following notion
of stability.

Let Φ : RN → R
M  denote a sensing matrix and Δ : RM → R

N  denote a
recovery algorithm. We say that the pair (Φ, Δ) is C-stable if for any x ∈ ΣK

and any e ∈ R
M  we have that

Equation:

∥ ∥ ∥ ∥
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∥Δ(Φx + e) − x∥2 ≤ C∥e∥.

This definition simply says that if we add a small amount of noise to the
measurements, then the impact of this on the recovered signal should not be
arbitrarily large. [link] below demonstrates that the existence of any decoding
algorithm (potentially impractical) that can stably recover from noisy
measurements requires that Φ satisfy the lower bound of [link] with a constant
determined by C.

 
If the pair (Φ, Δ) is C-stable, then
Equation:

1

C
∥x∥2 ≤ ∥Φx∥2

for all x ∈ Σ2K .

Pick any x, z ∈ ΣK . Define
Equation:

ex =
Φ(z − x)

2
and ez =

Φ(x − z)

2
,

and note that
Equation:

Φx + ex = Φz + ez =
Φ(x + z)

2
.

Let x̂ = Δ (Φx + ex) = Δ (Φz + ez). From the triangle inequality and the
definition of C-stability, we have that
Equation:

∥x − z∥2 = ∥x − x̂ + x̂ − z∥2

≤ ∥x − x̂∥2 + ∥x̂ − z∥2

≤ C∥ex∥ + C∥ez∥2

= C∥Φx − Φz∥2.



Since this holds for any x, z ∈ ΣK , the result follows.

Note that as C → 1, we have that Φ must satisfy the lower bound of [link] with 
δK = 1 − 1/C 2 → 0. Thus, if we desire to reduce the impact of noise in our
recovered signal then we must adjust Φ so that it satisfies the lower bound of [link]
with a tighter constant.

One might respond to this result by arguing that since the upper bound is not
necessary, we can avoid redesigning Φ simply by rescaling Φ so that as long as Φ
satisfies the RIP with δ2K < 1, the rescaled version αΦ will satisfy [link] for any
constant C. In settings where the size of the noise is independent of our choice of Φ
, this is a valid point — by scaling Φ we are simply adjusting the gain on the
“signal” part of our measurements, and if increasing this gain does not impact the
noise, then we can achieve arbitrarily high signal-to-noise ratios, so that eventually
the noise is negligible compared to the signal.

However, in practice we will typically not be able to rescale Φ to be arbitrarily
large. Moreover, in many practical settings the noise is not independent of Φ. For
example, suppose that the noise vector e represents quantization noise produced by
a finite dynamic range quantizer with B bits. Suppose the measurements lie in the
interval [−T , T ], and we have adjusted the quantizer to capture this range. If we
rescale Φ by α, then the measurements now lie between [−αT , αT ], and we must
scale the dynamic range of our quantizer by α. In this case the resulting
quantization error is simply αe, and we have achieved no reduction in the
reconstruction error.

Measurement bounds

We can also consider how many measurements are necessary to achieve the RIP. If
we ignore the impact of δ and focus only on the dimensions of the problem (N , M ,
and K) then we can establish a simple lower bound. We first provide a preliminary
lemma that we will need in the proof of the main theorem.

Let K and N  satisfying K < N/2 be given. There exists a set X ⊂ ΣK  such that
for any x ∈ X we have ∥x∥2 ≤ √K and for any x, z ∈ X with x ≠ z,
Equation:

∥x − z∥2 ≥ √K/2,



and
Equation:

log |X| ≥
K

2
log (

N

K
).

We will begin by considering the set
Equation:

U = {x ∈ {0, +1, −1}N : ∥x∥0 = K}.

By construction, ∥x∥2
2 = K for all x ∈ U . Thus if we construct X by picking

elements from U  then we automatically have ∥x∥2 ≤ √K.

Next, observe that |U | = (N
K
)2K . Note also that ∥x − z∥0 ≤ ∥x − z∥2

2, and thus

if ∥x − z∥2
2 ≤ K/2 then ∥x − z∥0 ≤ K/2. From this we observe that for any

fixed x ∈ U ,
Equation:

{z ∈ U : ∥x − z∥2
2 ≤ K/2} ≤ |{z ∈ U : ∥x − z∥0 ≤ K/2}| ≤ (

N

K/2
)3K/2.

Thus, suppose we construct the set X by iteratively choosing points that satisfy
[link]. After adding j points to the set, there are at least
Equation:

(
N

K
)2K − j(

N

K/2
)3K/2

points left to pick from. Thus, we can construct a set of size |X| provided that
Equation:

|X|(
N

K/2
)3K/2 ≤ (

N

K
)2K∣ ∣



Next, observe that
Equation:

(N
K
)

( N
K/2)

=
(K/2)!(N − K/2)!

K!(N − K)!
=

K/2

∏
i=1

N − K + i

K/2 + i
≥ (

N

K
−

1

2
)

K/2

,

where the inequality follows from the fact that (n − K + i)/(K/2 + i) is
decreasing as a function of i. Thus, if we set |X| = (N/K)K/2 then we have
Equation:

|X|(
3

4
)

K/2

= (
3N

4K
)

K/2

= (
N

K
−

N

4K
)

K/2

≤ (
N

K
−

1

2
)

K/2

≤
(N

K
)

( N
K/2)

.

Hence, [link] holds for |X| = (N/K)K/2, which establishes the lemma.

Using this lemma, we can establish the following bound on the required number of
measurements to satisfy the RIP.

Let Φ be an M × N  matrix that satisfies the RIP of order 2K with constant 
δ ∈ (0, 1

2 ]. Then
Equation:

M ≥ CK log (
N

K
)

where C = 1/2 log (√24 + 1) ≈ 0. 28.

We first note that since Φ satisfies the RIP, then for the set of points X in [link] we
have,
Equation:

∥Φx − Φz∥2 ≥ √1 − δ∥x − z∥2 ≥ √K/4



for all x, z ∈ X, since x − z ∈ Σ2K  and δ ≤ 1
2 . Similarly, we also have

Equation:

∥Φx∥2 ≤ √1 + δ∥x∥2 ≤ √3K/2

for all x ∈ X.

From the lower bound we can say that for any pair of points x, z ∈ X, if we center
balls of radius √K/4/2 = √K/16 at Φx and Φz, then these balls will be
disjoint. In turn, the upper bound tells us that the entire set of balls is itself
contained within a larger ball of radius √3K/2 + √K/16. If we let 
BM (r) = {x ∈ RM : ∥x∥2 ≤ r}, this implies that
Equation:

The theorem follows by applying the bound for |X| from [link].

Note that the restriction to δ ≤ 1
2  is arbitrary and is made merely for convenience

— minor modifications to the argument establish bounds for δ ≤ δmax for any 
δmax < 1. Moreover, although we have made no effort to optimize the constants, it
is worth noting that they are already quite reasonable.

Although the proof is somewhat less direct, one can establish a similar result (in the
dependence on N  and K) by examining the Gelfand width of the ℓ1 ball [link].
However, both this result and [link] fail to capture the precise dependence of M  on
the desired RIP constant δ. In order to quantify this dependence, we can exploit
recent results concerning the Johnson-Lindenstrauss lemma, which concerns
embeddings of finite sets of points in low-dimensional spaces [link]. Specifically, it

Vol(BM(√3K/2 +√K/16)) ≥ |X| ⋅ Vol(BM(√K/16)),

(√3K/2 +√K/16)
M

≥ |X| ⋅ (√K/16)
M

,

(√24 + 1)
M

≥ |X|,

M ≥
log |X|

log (√24 + 1)
.



is shown in [link] that if we are given a point cloud with p points and wish to
embed these points in RM  such that the squared ℓ2 distance between any pair of
points is preserved up to a factor of 1 ± ϵ, then we must have that
Equation:

M ≥
c0 log (p)

ϵ2
,

where c0 > 0 is a constant.

The Johnson-Lindenstrauss lemma is closely related to the RIP. We will see in
"Matrices that satisfy the RIP" that any procedure that can be used for generating a
linear, distance-preserving embedding for a point cloud can also be used to
construct a matrix that satisfies the RIP. Moreover, in [link] it is shown that if a
matrix Φ satisfies the RIP of order K = c1 log (p) with constant δ, then Φ can be
used to construct a distance-preserving embedding for p points with ϵ = δ/4.
Combining these we obtain
Equation:

M ≥
c0 log (p)

ϵ2
=

16c0K

c1δ2
.

Thus, for small δ the number of measurements required to ensure that Φ satisfies
the RIP of order K will be proportional to K/δ2, which may be significantly
higher than K log (N/K). See [link] for further details.



The RIP and the NSP
This module describes the relationship between the restricted isometry
property (RIP) and the null space property (NSP). Specifically, it is shown
that a matrix which satisfies the RIP will also satisfy the NSP.

Next we will show that if a matrix satisfies the restricted isometry property
(RIP), then it also satisfies the null space property (NSP). Thus, the RIP is
strictly stronger than the NSP.

Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1. Then Φ
satisfies the NSP of order 2K with constant
Equation:

C =
√2δ2K

1 − (1 + √2)δ2K

.

The proof of this theorem involves two useful lemmas. The first of these
follows directly from standard norm inequality by relating a K-sparse
vector to a vector in RK . We include a simple proof for the sake of
completeness.

Suppose u ∈ ΣK . Then
Equation:

∥u∥1

√K
≤ ∥u∥2 ≤ √K∥u∥∞.

For any u, ∥u∥1 = |⟨u, sgn(u)⟩|. By applying the Cauchy-Schwarz
inequality we obtain ∥u∥1 ≤ ∥u∥2∥sgn(u)∥2. The lower bound follows
since sgn(u) has exactly K nonzero entries all equal to ±1 (since u ∈ ΣK)
and thus ∥sgn(u)∥ = √K. The upper bound is obtained by observing that
each of the K nonzero entries of u can be upper bounded by ∥u∥∞.



Below we state the second key lemma that we will need in order to prove
[link]. This result is a general result which holds for arbitrary h, not just
vectors h ∈ N (Φ). It should be clear that when we do have h ∈ N (Φ),
the argument could be simplified considerably. However, this lemma will
prove immensely useful when we turn to the problem of sparse recovery
from noisy measurements later in this course, and thus we establish it now
in its full generality. We state the lemma here, which is proven in "ℓ1

minimization proof".

Suppose that Φ satisfies the RIP of order 2K, and let h ∈ R
N , h ≠ 0 be

arbitrary. Let Λ0 be any subset of {1, 2, ..., N} such that |Λ0|≤ K. Define 
Λ1 as the index set corresponding to the K entries of hΛc

0
 with largest

magnitude, and set Λ = Λ0 ∪ Λ1. Then
Equation:

∥hΛ∥2 ≤ α
∥hΛc

0
∥

1

√K
+ β

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

,

where
Equation:

α =
√2δ2K

1 − δ2K

, β =
1

1 − δ2K

.

Again, note that [link] holds for arbitrary h. In order to prove [link], we
merely need to apply [link] to the case where h ∈ N (Φ).

Towards this end, suppose that h ∈ N (Φ). It is sufficient to show that
Equation:

∥hΛ∥2 ≤ C
∥hΛc∥1

√K
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holds for the case where Λ is the index set corresponding to the 2K largest
entries of h. Thus, we can take Λ0 to be the index set corresponding to the 
K largest entries of h and apply [link].

The second term in [link] vanishes since Φh = 0, and thus we have
Equation:

∥hΛ∥2 ≤ α
∥hΛc

0
∥

1

√K
.

Using [link],
Equation:

∥hΛc
0
∥

1
= ∥hΛ1

∥1 + ∥hΛc∥1 ≤ √K∥hΛ1
∥2 + ∥hΛc∥1

resulting in
Equation:

∥hΛ∥2 ≤ α(∥hΛ1∥2 +
∥hΛc∥1

√K
).

Since ∥hΛ1∥2 ≤ ∥hΛ∥2, we have that
Equation:

(1 − α)∥hΛ∥2 ≤ α
∥hΛc∥1

√K
.

The assumption δ2K < √2 − 1 ensures that α < 1, and thus we may
divide by 1 − α without changing the direction of the inequality to establish
[link] with constant
Equation:



C =
α

1 − α
=

√2δ2K

1 − (1 + √2)δ2K

,

as desired.



Matrices that satisfy the RIP
This module provides some examples of matrices that satisfy the restricted
isometry property (RIP), focusing primarily on random constructions.

We now turn to the question of how to construct matrices that satisfy the
restricted isometry property (RIP). It is possible to deterministically
construct matrices of size M × N  that satisfy the RIP of order K, but such
constructions also require M  to be relatively large [link], [link]. For
example, the construction in [link] requires M = O(K 2 log N) while the
construction in [link] requires M = O(KN α) for some constant α. In
many real-world settings, these results would lead to an unacceptably large
requirement on M .

Fortunately, these limitations can be overcome by randomizing the matrix
construction. We will construct our random matrices as follows: given M
and N , generate random matrices Φ by choosing the entries φij as
independent realizations from some probability distribution. We begin by
observing that if all we require is that δ2K > 0 then we may set M = 2K
and draw a Φ according to a Gaussian distribution. With probability 1, any
subset of 2K columns will be linearly independent, and hence all subsets of
2K columns will be bounded below by 1 − δ2K  where δ2K > 0. However,
suppose we wish to know the constant δ2K . In order to find the value of the
constant we must consider all possible (N

K
)K-dimensional subspaces of 

RN . From a computational perspective, this is impossible for any realistic
values of N  and K. Thus, we focus on the problem of achieving the RIP of
order 2K for a specified constant δ2K . Our treatment is based on the simple
approach first described in [link] and later generalized to a larger class of
random matrices in [link].

To ensure that the matrix will satisfy the RIP, we will impose two
conditions on the random distribution. First, we require that the distribution
will yield a matrix that is norm-preserving, which will require that
Equation:

E (φ2
ij) =

1

M
,



and hence the variance of the distribution is 1/M . Second, we require that
the distribution is a sub-Gaussian distribution, meaning that there exists a
constant c > 0 such that
Equation:

E(eφijt) ≤ ec2t2/2

for all t ∈ R. This says that the moment-generating function of our
distribution is dominated by that of a Gaussian distribution, which is also
equivalent to requiring that tails of our distribution decay at least as fast as
the tails of a Gaussian distribution. Examples of sub-Gaussian distributions
include the Gaussian distribution, the Bernoulli distribution taking values 
±1/√M , and more generally any distribution with bounded support. See
"Sub-Gaussian random variables" for more details.

For the moment, we will actually assume a bit more than sub-Gaussianity.
Specifically, we will assume that the entries of Φ are strictly sub-Gaussian,
which means that they satisfy [link] with c2 = E(φ2

ij) = 1
M

. Similar
results to the following would hold for general sub-Gaussian distributions,
but to simplify the constants we restrict our present attention to the strictly
sub-Gaussian Φ. In this case we have the following useful result, which is
proven in "Concentration of measure for sub-Gaussian random variables".

Suppose that Φ is an M × N  matrix whose entries φij are i.i.d. with φij

drawn according to a strictly sub-Gaussian distribution with c2 = 1/M . Let
Y = Φx for x ∈ RN . Then for any ϵ > 0, and any x ∈ RN ,
Equation:

E(∥ Y ∥2
2) = ∥ x ∥2

2

and
Equation:



P( ∥ Y ∥2
2 − ∥ x ∥2

2 ≥ ϵ∥ x ∥2
2) ≤ 2 exp (−

Mϵ2

κ*
)

with κ* = 2/ (1− log (2)) ≈ 6. 52.

This tells us that the norm of a sub-Gaussian random vector strongly
concentrates about its mean. Using this result, in "Proof of the RIP for sub-
Gaussian matrices" we provide a simple proof based on that in [link] that
sub-Gaussian matrices satisfy the RIP.

Fix δ ∈ (0, 1). Let Φ be an M × N  random matrix whose entries φij are
i.i.d. with φij drawn according to a strictly sub-Gaussian distribution with 
c2 = 1/M . If
Equation:

M ≥ κ1K log (
N

K
),

then Φ satisfies the RIP of order K with the prescribed δ with probability
exceeding 1 − 2e−κ2M , where κ1 is arbitrary and 
κ2 = δ2/2κ*− log (42e/δ)/κ1.

Note that in light of the measurement bounds in "The restricted isometry
property" we see that [link] achieves the optimal number of measurements
(up to a constant).

Using random matrices to construct Φ has a number of additional benefits.
To illustrate these, we will focus on the RIP. First, one can show that for
random constructions the measurements are democratic, meaning that it is
possible to recover a signal using any sufficiently large subset of the
measurements [link], [link]. Thus, by using random Φ one can be robust to
the loss or corruption of a small fraction of the measurements. Second, and
perhaps more significantly, in practice we are often more interested in the
setting where x is sparse with respect to some basis Ψ . In this case what we
actually require is that the product ΦΨ  satisfies the RIP. If we were to use a

∣ ∣



deterministic construction then we would need to explicitly take Ψ  into
account in our construction of Φ, but when Φ is chosen randomly we can
avoid this consideration. For example, if Φ is chosen according to a
Gaussian distribution and Ψ  is an orthonormal basis then one can easily
show that ΦΨ  will also have a Gaussian distribution, and so provided that 
M  is sufficiently high ΦΨ  will satisfy the RIP with high probability, just as
before. Although less obvious, similar results hold for sub-Gaussian
distributions as well [link]. This property, sometimes referred to as
universality, constitutes a significant advantage of using random matrices to
construct Φ.

Finally, we note that since the fully random matrix approach is sometimes
impractical to build in hardware, several hardware architectures have been
implemented and/or proposed that enable random measurements to be
acquired in practical settings. Examples include the random
demodulator [link], random filtering [link], the modulated wideband
converter [link], random convolution [link], [link], and the compressive
multiplexer [link]. These architectures typically use a reduced amount of
randomness and are modeled via matrices Φ that have significantly more
structure than a fully random matrix. Perhaps somewhat surprisingly, while
it is typically not quite as easy as in the fully random case, one can prove
that many of these constructions also satisfy the RIP.



Coherence
In this module we introduce coherence, which provides a more
computationally friendly alternative to conditions such as the spark, NSP, or
RIP. We briefly describe the theoretical relationship between these
conditions.

While the spark, null space property (NSP), and restricted isometry
property (RIP) all provide guarantees for the recovery of sparse signals,
verifying that a general matrix Φ satisfies any of these properties has a
combinatorial computational complexity, since in each case one must
essentially consider (N

K
) submatrices. In many settings it is preferable to

use properties of Φ that are easily computable to provide more concrete
recovery guarantees. The coherence of a matrix is one such property [link],
[link].

The coherence of a matrix Φ, μ(Φ), is the largest absolute inner
product between any two columns φi, φj of
Φ:
Equation:

μ (Φ) = max
1≤i<j≤N

|⟨φi,φj⟩|

∥ φi ∥2 ∥ φj ∥2

.

It is possible to show that the coherence of a matrix is always in the range 
μ (Φ) ∈ [√ N−M

M(N−1)
, 1]; the lower bound is known as the Welch

bound [link], [link], [link]. Note that when N ≫ M , the lower bound is
approximately μ (Φ) ≥ 1/√M .

One can sometimes relate coherence to the spark, NSP, and RIP. For
example, the coherence and spark properties of a matrix can be related by
employing the Gershgorin circle theorem [link], [link].
(Theorem 2 of [link])

The eigenvalues of an N × N  matrix M  with entries mij, 1 ≤ i, j ≤ N ,
lie in the union of N  discs di = di (ci, ri), 1 ≤ i ≤ N , centered at 



ci = mii and with radius ri = ∑j≠i |mij|.

Applying this theorem on the Gram matrix G = ΦT
ΛΦΛ leads to the

following straightforward result.

For any matrix Φ,
Equation:

spark (Φ) ≥ 1 +
1

μ(Φ)
.

Since spark(Φ) does not depend on the scaling of the columns, we can
assume without loss of generality that Φ has unit-norm columns. Let 
Λ ⊆ {1, ...,N} with |Λ| = p determine a set of indices. We consider the
restricted Gram matrix G = ΦT

Λ
ΦΛ, which satisfies the following

properties:

gii = 1, 1 ≤ i ≤ p;
|gij|≤ μ (Φ), 1 ≤ i, j ≤ p, i ≠ j.

From [link], if ∑j≠i gij |<|gii  then the matrix G is positive definite, so
that the columns of ΦΛ are linearly independent. Thus, the spark condition
implies (p − 1)μ(Φ) < 1 or, equivalently, p < 1 + 1/μ(Φ) for all 
p < spark(Φ), yielding spark(Φ) ≥ 1 + 1/μ(Φ).

By merging Theorem 1 from "Null space conditions" with [link], we can
pose the following condition on Φ that guarantees uniqueness.
(Theorem 12 of [link])

If
Equation:

K <
1

2
(1 +

1

μ(Φ)
),∣ ∣



then for each measurement vector y ∈ R
M  there exists at most one signal 

x ∈ ΣK  such that y = Φx.

[link], together with the Welch bound, provides an upper bound on the level
of sparsity K that guarantees uniqueness using coherence: K = O(√M).
Another straightforward application of the Gershgorin circle theorem
([link]) connects the RIP to the coherence property.

If Φ has unit-norm columns and coherence μ = μ(Φ), then Φ satisfies the
RIP of order K with δ = (K − 1)μ for all K < 1/μ.

The proof of this lemma is similar to that of [link].

The results given here emphasize the need for small coherence μ(Φ) for the
matrices used in CS. Coherence bounds have been studied both for
deterministic and randomized matrices. For example, there are known
matrices Φ of size M × M 2 that achieve the coherence lower bound 
μ (Φ) = 1/√M , such as the Gabor frame generated from the Alltop
sequence [link] and more general equiangular tight frames [link]. These
constructions restrict the number of measurements needed to recover a K-
sparse signal to be M = O(K 2 log N). Furthermore, it can be shown that
when the distribution used has zero mean and finite variance, then in the
asymptotic regime (as M  and N  grow) the coherence converges to 
μ (Φ) = √(2 log N)/M  [link], [link], [link]. Such constructions would
allow K to grow asymptotically as M = O(K 2 log N), matching the
known finite-dimensional bounds.

The measurement bounds dependent on coherence are handicapped by the
squared dependence on the sparsity K, but it is possible to overcome this
bottleneck by shifting the types of guarantees from worst-case/deterministic
behavior, to average-case/probabilistic behavior [link], [link]. In this
setting, we pose a probabilistic prior on the set of K-sparse signals x ∈ ΣK

. It is then possible to show that if Φ has low coherence μ(Φ) and spectral
norm ∥ Φ ∥2, and if K = O(μ−2 (Φ) log N), then the signal x can be
recovered from its CS measurements y = Φx with high probability. Note
that if we replace the Welch bound, then we obtain K = O(M log N),



which returns to the linear dependence of the measurement bound on the
signal sparsity that appears in RIP-based results.



Signal recovery via ℓ_1 minimization
This module introduces and motivates ℓ_1 minimization as a framework for
sparse recovery.

As we will see later in this course, there now exist a wide variety of
approaches to recover a sparse signal x from a small number of linear
measurements. We begin by considering a natural first approach to the
problem of sparse recovery.

Given measurements y = Φx and the knowledge that our original signal x
is sparse or compressible, it is natural to attempt to recover x by solving an
optimization problem of the form
Equation:

x̂ =argmin
z

∥z∥0 subject to z ∈ B (y),

where B(y) ensures that x̂ is consistent with the measurements y. Recall
that ∥z∥0 = |supp (z)| simply counts the number of nonzero entries in z, so
[link] simply seeks out the sparsest signal consistent with the observed
measurements. For example, if our measurements are exact and noise-free,
then we can set B(y) = {z : Φz = y}. When the measurements have been
contaminated with a small amount of bounded noise, we could instead set 
B (y) = {z : ∥Φz − y∥2 ≤ ϵ}. In both cases, [link] finds the sparsest x
that is consistent with the measurements y.

Note that in [link] we are inherently assuming that x itself is sparse. In the
more common setting where x = Ψα, we can easily modify the approach
and instead consider
Equation:

α̂ =argmin
z

∥z∥0 subject to z ∈ B (y)

where B(y) = {z : ΦΨz = y} or B (y) = {z : ∥ΦΨz − y∥2 ≤ ϵ}. By
setting Φ̃ = ΦΨ  we see that [link] and [link] are essentially identical.
Moreover, as noted in "Matrices that satisfy the RIP", in many cases the
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introduction of Ψ  does not significantly complicate the construction of
matrices Φ such that Φ̃ will satisfy the desired properties. Thus, for most of
the remainder of this course we will restrict our attention to the case where 
Ψ = I. It is important to note, however, that this restriction does impose
certain limits in our analysis when Ψ  is a general dictionary and not an
orthonormal basis. For example, in this case 
∥x̂ − x∥2 = ∥Ψĉ − Ψc∥2 ≠ ∥α̂ − α∥2, and thus a bound on ∥ĉ − c∥2

cannot directly be translated into a bound on ∥x̂ − x∥, which is often the
metric of interest.

Although it is possible to analyze the performance of [link] under the
appropriate assumptions on Φ, we do not pursue this strategy since the
objective function ∥⋅∥0 is nonconvex, and hence [link] is potentially very
difficult to solve. In fact, one can show that for a general matrix Φ, even
finding a solution that approximates the true minimum is NP-hard. One
avenue for translating this problem into something more tractable is to
replace ∥⋅∥0 with its convex approximation ∥⋅∥1. Specifically, we consider
Equation:

x̂ =argmin
z

∥z∥1 subject to z ∈ B (y).

Provided that B(y) is convex, [link] is computationally feasible. In fact,
when B(y) = {z : Φz = y}, the resulting problem can be posed as a linear
program [link].

Approximation in ℓ1 norm Approximation in ℓp quasinorm



It is clear that replacing [link] with [link] transforms a computationally
intractable problem into a tractable one, but it may not be immediately
obvious that the solution to [link] will be at all similar to the solution to
[link]. However, there are certainly intuitive reasons to expect that the use
of ℓ1 minimization will indeed promote sparsity. As an example, recall the
example we discussed earlier shown in [link]. In this case the solutions to
the ℓ1 minimization problem coincided exactly with the solution to the ℓp

minimization problem for any p < 1, and notably, is sparse. Moreover, the
use of ℓ1 minimization to promote or exploit sparsity has a long history,
dating back at least to the work of Beurling on Fourier transform
extrapolation from partial observations [link].

Additionally, in a somewhat different context, in 1965 Logan [link]
showed
that a bandlimited signal can be perfectly recovered in the presence of
arbitrary corruptions on a small interval. Again, the recovery method
consists of searching for the bandlimited signal that is closest to the
observed signal in the ℓ1 norm. This can be viewed as further validation of
the intuition gained from [link] — the ℓ1 norm is well-suited to sparse
errors.

Historically, the use of ℓ1 minimization on large problems finally became
practical with the explosion of computing power in the late 1970's and early
1980's. In one of its first applications, it was demonstrated that geophysical

Best approximation of a point in R2 by a a one-dimensional
subspace using the ℓ1 norm and the ℓp quasinorm with p = 1

2
.



signals consisting of spike trains could be recovered from only the high-
frequency components of these signals by exploiting ℓ1 minimization [link],
[link], [link].
Finally, in the 1990's there was renewed interest in these
approaches within the signal processing community for the purpose of
finding sparse approximations to signals and images when represented in
overcomplete dictionaries or unions of bases [link], [link].
Separately, ℓ1

minimization received significant attention in the statistics literature as a
method for variable selection in linear regression, known as the
Lasso [link].

Thus, there are a variety of reasons to suspect that ℓ1 minimization will
provide an accurate method for sparse signal recovery. More importantly,
this also provides a computationally tractable approach to the sparse signal
recovery problem. We now provide an overview of ℓ1 minimization in both
the noise-free and noisy settings from a theoretical perspective. We will
then further discuss algorithms for performing ℓ1 minimization later in this
course.
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Noise-free signal recovery
This module establishes a simple performance guarantee of L1
minimization for signal recovery with noise-free measurements.

We now begin our analysis of
Equation:

x̂ =argmin
z

∥z∥1 subject to z ∈ B (y).

for various specific choices of B(y). In order to do so, we require the
following general result which builds on Lemma 4 from "ℓ1 minimization
proof". The key ideas in this proof follow from [link].

Suppose that Φ satisfies the restricted isometry property (RIP) of order 2K

with δ2K < √2 − 1. Let x, x̂ ∈ R
N  be given, and define h = x̂ − x. Let 

Λ0 denote the index set corresponding to the K entries of x with largest
magnitude and Λ1 the index set corresponding to the K entries of hΛc

0
 with

largest magnitude. Set Λ = Λ0 ∪ Λ1. If ∥x̂∥1 ≤ ∥x∥1, then
Equation:

∥h∥2 ≤ C0
σK(x)1

√K
+ C1

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.

where
Equation:

C0 = 2
1 − (1 − √2)δ2K

1 − (1 + √2)δ2K

, C1 =
2

1 − (1 + √2)δ2K

.

We begin by observing that h = hΛ + hΛc , so that from the triangle
inequality
Equation:

∥ ∥ ∥ ∥ ∥ ∥



∥h∥2 ≤ ∥hΛ∥2 + ∥hΛc∥2.

We first aim to bound ∥hΛc∥2. From Lemma 3 from "ℓ1 minimization
proof" we have
Equation:

∥hΛc∥2 = ∥∑
j≥2

hΛj
∥

2

≤ ∑
j≥2

∥hΛj
∥

2
≤

∥hΛc
0
∥

1

√K
,

where the Λj are defined as before, i.e., Λ1 is the index set corresponding to
the K largest entries of hΛc

0
 (in absolute value), Λ2 as the index set

corresponding to the next K largest entries, and so on.

We now wish to bound ∥hΛc
0
∥

1
. Since ∥x∥1 ≥ ∥x̂∥1, by applying the

triangle inequality we obtain
Equation:

Rearranging and again applying the triangle inequality,
Equation:

Recalling that σK(x)1 = ∥xΛc
0
∥

1
= ∥x − xΛ0

∥1,
Equation:

∥hΛc
0
∥

1
≤ ∥hΛ0

∥1 + 2σK(x)1.

∥x∥1 ≥ ∥x + h∥1 = ∥xΛ0 + hΛ0∥1 + ∥xΛc
0

+ hΛc
0
∥

1

≥ ∥xΛ0∥1 − ∥hΛ0∥1 + ∥hΛc
0
∥

1
− ∥xΛc

0
∥

1
.

∥hΛc
0
∥

1
≤ ∥x∥1 − ∥xΛ0∥1 + ∥hΛ0∥1 + ∥xΛc

0
∥

1

≤ ∥x − xΛ0∥1 + ∥hΛ0∥1 + ∥xΛc
0
∥

1
.



Combining this with [link] we obtain
Equation:

∥hΛc∥2 ≤
∥hΛ0

∥1 + 2σK(x)1

√K
≤ ∥hΛ0

∥2 + 2
σK(x)1

√K

where the last inequality follows from standard bounds on ℓp norms
(Lemma 1 from "The RIP and the NSP"). By observing that 
∥hΛ0∥2 ≤ ∥hΛ∥2 this combines with [link] to yield
Equation:

∥h∥2 ≤ 2∥hΛ∥2 + 2
σK(x)1

√K
.

We now turn to establishing a bound for ∥hΛ∥2. Combining Lemma 4 from
"ℓ1 minimization proof" with [link] and again applying standard bounds on 
ℓp norms we obtain
Equation:

Since ∥hΛ0
∥2 ≤ ∥hΛ∥2,

Equation:

(1 − α)∥hΛ∥2 ≤ 2α
σK(x)1

√K
+ β

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.

∥hΛ∥2 ≤ α
∥hΛc

0
∥

1

√K
+ β

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

≤ α
∥hΛ0∥1 + 2σK(x)1

√K
+ β

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

≤ α∥hΛ0∥2 + 2α
σK(x)1

√K
+ β

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.



The assumption that δ2K < √2 − 1 ensures that α < 1. Dividing by 
(1 − α) and combining with [link] results in
Equation:

∥h∥2 ≤ (
4α

1 − α
+ 2)

σK(x)1

√K
+

2β

1 − α

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.

Plugging in for α and β yields the desired constants.

[link] establishes an error bound for the class of ℓ1 minimization algorithms
described by [link] when combined with a measurement matrix Φ satisfying
the RIP. In order to obtain specific bounds for concrete examples of B(y),
we must examine how requiring x̂ ∈ B (y) affects |⟨ΦhΛ, Φh⟩|. As an
example, in the case of noise-free measurements we obtain the following
theorem.
(Theorem 1.1 of [link])

Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1 and we
obtain measurements of the form y = Φx. Then when 
B(y) = {z : Φz = y}, the solution x̂ to [link] obeys
Equation:

∥x̂ − x∥2 ≤ C0
σK(x)1

√K
.

Since x ∈ B(y) we can apply [link] to obtain that for h = x̂ − x,
Equation:

∥h∥2 ≤ C0
σK(x)1

√K
+ C1

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.

Furthermore, since x, x̂ ∈ B (y) we also have that y = Φx = Φx̂ and
hence Φh = 0. Therefore the second term vanishes, and we obtain the
desired result.



[link] is rather remarkable. By considering the case where 
x ∈ ΣK = {x : ∥x∥0 ≤ K} we can see that provided Φ satisfies the RIP
— which as shown earlier allows for as few as O(K log (N/K))
measurements — we can recover any K-sparse xexactly. This result seems
improbable on its own, and so one might expect that the procedure would
be highly sensitive to noise, but we will see next that [link] can also be used
to demonstrate that this approach is actually stable.

Note that [link] assumes that Φ satisfies the RIP. One could easily modify
the argument to replace this with the assumption that Φ satisfies the null
space property (NSP) instead. Specifically, if we are only interested in the
noiseless setting, in which case h lies in the null space of Φ, then [link]
simplifies and its proof could be broken into two steps: (i) show that if Φ
satisfies the RIP then it satisfies the NSP (as shown in "The RIP and the
NSP"), and (ii) the NSP implies the simplified version of [link]. This proof
directly mirrors that of [link]. Thus, by the same argument as in the proof of
[link], it is straightforward to show that if Φ satisfies the NSP then it will
obey the same error bound.



Signal recovery in noise
This module establishes a number of results concerning various L1 minimization
algorithms designed for sparse signal recovery from noisy measurements. The
results in this module apply to both bounded noise as well as Gaussian (or more
generally, sub-Gaussian) noise.

The ability to perfectly reconstruct a sparse signal from noise-free measurements
represents a promising result. However, in most real-world systems the
measurements are likely to be contaminated by some form of noise. For instance, in
order to process data in a computer we must be able to represent it using a finite
number of bits, and hence the measurements will typically be subject to
quantization error. Moreover, systems which are implemented in physical hardware
will be subject to a variety of different types of noise depending on the setting.

Perhaps somewhat surprisingly, one can show that it is possible to modify
Equation:

x̂ =argmin
z

∥z∥1 subject to z ∈ B (y).

to stably recover sparse signals under a variety of common noise models [link],
[link], [link]. As might be expected, the restricted isometry property (RIP) is
extremely useful in establishing performance guarantees in noise.

In our analysis we will make repeated use of Lemma 1 from "Noise-free signal
recovery", so we repeat it here for convenience.

Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1. Let x, x̂ ∈ RN

be given, and define h = x̂ − x. Let Λ0 denote the index set corresponding to the 
K entries of x with largest magnitude and Λ1 the index set corresponding to the K
entries of hΛc

0
 with largest magnitude. Set Λ = Λ0 ∪ Λ1. If ∥x̂∥1 ≤ ∥x∥1, then

Equation:

∥h∥2 ≤ C0
σK(x)1

√K
+ C1

|⟨ΦhΛ, Φh⟩|

∥hΛ∥2

.

where
Equation:



C0 = 2
1 − (1 − √2)δ2K

1 − (1 + √2)δ2K

, C1 =
2

1 − (1 + √2)δ2K

.

Bounded noise

We first provide a bound on the worst-case performance for uniformly bounded
noise, as first investigated in [link].
(Theorem 1.2 of [link])

Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1 and let 
y = Φx + e where ∥e∥2 ≤ ϵ. Then when B (y) = {z : ∥Φz − y∥2 ≤ ϵ}, the
solution x̂ to [link] obeys
Equation:

∥x̂ − x∥2 ≤ C0
σK(x)1

√K
+ C2ϵ,

where
Equation:

C0 = 2
1 − (1 − √2)δ2K

1 − (1 + √2)δ2K

, C2 = 4
√1 + δ2K

1 − (1 + √2)δ2K

.

We are interested in bounding ∥h∥2 = ∥x̂ − x∥2. Since ∥e∥2 ≤ ϵ, x ∈ B(y), and
therefore we know that ∥x̂∥1 ≤ ∥x∥1. Thus we may apply [link], and it remains to
bound |⟨ΦhΛ, Φh⟩|. To do this, we observe that
Equation:

∥Φh∥2 = ∥Φ(x̂ − x)∥
2

= ∥Φx̂ − y + y − Φx∥2 ≤ ∥Φx̂ − y∥2 + ∥y − Φx∥2 ≤ 2ϵ

where the last inequality follows since x, x̂ ∈ B (y). Combining this with the RIP
and the Cauchy-Schwarz inequality we obtain
Equation:



|⟨ΦhΛ, Φh⟩| ≤ ∥ΦhΛ∥2∥Φh∥2 ≤ 2ϵ√1 + δ2K∥hΛ∥2.

Thus,
Equation:

∥h∥2 ≤ C0
σK(x)1

√K
+ C12ϵ√1 + δ2K = C0

σK(x)1

√K
+ C2ϵ,

completing the proof.

In order to place this result in context, consider how we would recover a sparse
vector x if we happened to already know the K locations of the nonzero
coefficients, which we denote by Λ0. This is referred to as the oracle estimator. In
this case a natural approach is to reconstruct the signal using a simple
pseudoinverse:
Equation:

The implicit assumption in [link] is that ΦΛ0
 has full column-rank (and hence we are

considering the case where ΦΛ0  is the M × K matrix with the columns indexed by 
Λc

0 removed) so that there is a unique solution to the equation y = ΦΛ0
xΛ0

. With
this choice, the recovery error is given by
Equation:

∥x̂ − x∥2 = ∥(ΦT
Λ0

ΦΛ0
)

−1
ΦT

Λ0
(Φx + e) − x∥

2
= ∥(ΦT

Λ0
ΦΛ0

)
−1

ΦT
Λ0

e∥
2
.

We now consider the worst-case bound for this error. Using standard properties of
the singular value decomposition, it is straightforward to show that if Φ satisfies the
RIP of order 2K (with constant δ2K), then the largest singular value of Φ†

Λ0
 lies in

the range [1/√1 + δ2K, 1/√1 − δ2K]. Thus, if we consider the worst-case
recovery error over all e such that ∥e∥2 ≤ ϵ, then the recovery error can be bounded
by
Equation:

x̂Λ0 = Φ
†
Λ0

y = (ΦT
Λ0

ΦΛ0)
−1

ΦT
Λ0

y

x̂Λc
0

= 0.



ϵ

√1 + δ2K

≤ ∥x̂ − x∥2 ≤
ϵ

√1 − δ2K

.

Therefore, if x is exactly K-sparse, then the guarantee for the pseudoinverse
recovery method, which is given perfect knowledge of the true support of x, cannot
improve upon the bound in [link] by more than a constant value.

We now examine a slightly different noise model. Whereas [link] assumed that the
noise norm ∥e∥2 was small, the theorem below analyzes a different recovery
algorithm known as the Dantzig selector in the case where ∥ΦT e∥∞ is small [link].
We will see below that this will lead to a simple analysis of the performance of this
algorithm in Gaussian noise.

Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1 and we obtain
measurements of the form y = Φx + e where ∥ΦT e∥∞ ≤ λ. Then when 
B (y) = {z : ∥ΦT (Φz − y)∥∞ ≤ λ}, the solution x̂ to [link] obeys
Equation:

∥x̂ − x∥2 ≤ C0
σK(x)1

√K
+ C3√Kλ,

where
Equation:

C0 = 2
1 − (1 − √2)δ2K

1 − (1 + √2)δ2K

, C3 =
4√2

1 − (1 + √2)δ2K

.

The proof mirrors that of [link]. Since ∥ΦT e∥∞ ≤ λ, we again have that x ∈ B(y),
so ∥x̂∥1 ≤ ∥x∥1 and thus [link] applies. We follow a similar approach as in [link] to
bound |⟨ΦhΛ, Φh⟩|. We first note that
Equation:

∥ΦT Φh∥∞ ≤ ∥ΦT (Φx̂ − y)∥
∞

+ ∥ΦT (y − Φx)∥∞ ≤ 2λ



where the last inequality again follows since x, x̂ ∈ B (y). Next, note that 
ΦhΛ = ΦΛhΛ. Using this we can apply the Cauchy-Schwarz inequality to obtain
Equation:

|⟨ΦhΛ, Φh⟩| = ⟨hΛ, ΦT
ΛΦh⟩ ≤ ∥hΛ∥2∥ΦT

ΛΦh∥2.

Finally, since ∥ΦT Φh∥∞ ≤ 2λ, we have that every coefficient of ΦT Φh is at most 
2λ, and thus ∥ΦT

ΛΦh∥2 ≤ √2K (2λ). Thus,
Equation:

∥h∥2 ≤ C0
σK(x)1

√K
+ C12√2Kλ = C0

σK(x)1

√K
+ C3√Kλ,

as desired.

Gaussian noise

Finally, we also examine the performance of these approaches in the presence of
Gaussian noise. The case of Gaussian noise was first considered in [link], which
examined the performance of ℓ0 minimization with noisy measurements. We now
see that [link] and [link] can be leveraged to provide similar guarantees for ℓ1

minimization. To simplify our discussion we will restrict our attention to the case
where x ∈ ΣK = {x : ∥x∥0 ≤ K}, so that σK(x)1 = 0 and the error bounds in
[link] and [link] depend only on the noise e.

To begin, suppose that the coefficients of e ∈ R
M  are i.i.d. according to a Gaussian

distribution with mean zero and variance σ2. Since the Gaussian distribution is itself
sub-Gaussian, we can apply results such as Corollary 1 from "Concentration of
measure for sub-Gaussian random variables" to show that there exists a constant 
c0 > 0 such that for any ϵ > 0,
Equation:

P(∥e∥2 ≥ (1 + ϵ)√Mσ) ≤exp (−c0ϵ2M).

Applying this result to [link] with ϵ = 1, we obtain the following result for the
special case of Gaussian noise.

∣ ∣



Suppose that Φ satisfies the RIP of order 2K with δ2K < √2 − 1. Furthermore,
suppose that x ∈ ΣK  and that we obtain measurements of the form y = Φx + e

where the entries of e are i.i.d. N (0, σ2). Then when 

B (y) = {z : ∥Φz − y∥2 ≤ 2√Mσ}, the solution x̂ to [link] obeys

Equation:

∥x̂ − x∥2 ≤ 8
√1 + δ2K

1 − (1 + √2)δ2K

√Mσ

with probability at least 1− exp (−c0M).

We can similarly consider [link] in the context of Gaussian noise. If we assume that
the columns of Φ have unit norm, then each coefficient of ΦT e is a Gaussian
random variable with mean zero and variance σ2. Using standard tail bounds for the
Gaussian distribution (see Theorem 1 from "Sub-Gaussian random variables"), we
have that
Equation:

P( [ΦT e]
i

≥ tσ) ≤exp (−t2/2)

for i = 1, 2, ..., n. Thus, using the union bound over the bounds for different i, we
obtain
Equation:

P(∥ΦT e∥∞ ≥ 2√log Nσ) ≤ N exp (−2 log N) =
1

N
.

Applying this to [link], we obtain the following result, which is a simplified version
of Theorem 1.1 of [link].

Suppose that Φ has unit-norm columns and satisfies the RIP of order 2K with 
δ2K < √2 − 1. Furthermore, suppose that x ∈ ΣK  and that we obtain
measurements of the form y = Φx + e where the entries of e are i.i.d. N (0, σ2).

Then when B (y) = {z : ∥ΦT (Φz − y)∥∞ ≤ 2√log Nσ}, the solution x̂ to

[link] obeys
Equation: ∣ ∣



∥x̂ − x∥2 ≤ 4√2
√1 + δ2K

1 − (1 + √2)δ2K

√K log Nσ

with probability at least 1 − 1
N

.

Ignoring the precise constants and the probabilities with which the bounds hold
(which we have made no effort to optimize), we observe that if M = O(K log N)
then these results appear to be essentially the same. However, there is a subtle
difference. Specifically, if M  and N  are fixed and we consider the effect of varying 
K, we can see that [link] yields a bound that is adaptive to this change, providing a
stronger guarantee when K is small, whereas the bound in [link] does not improve
as K is reduced. Thus, while they provide very similar guarantees, there are certain
circumstances where the Dantzig selector is preferable. See [link] for further
discussion of the comparative advantages of these approaches.



Instance-optimal guarantees revisited
In this module we demonstrate the difficulty of obtaining instance-optimal guarantees
in the L2 norm. We then show that it is much easier to obtain such guarantees in the
probabilistic setting.

We now briefly return to the noise-free setting to take a closer look at instance-
optimal guarantees for recovering non-sparse signals. To begin, recall that in
Theorem 1 from "Noise-free signal recovery" we bounded the ℓ2-norm of the
reconstruction error of
Equation:

x̂ =argmin
z

∥z∥1 subject to z ∈ B (y).

as
Equation:

∥x̂ − x∥2 ≤ C0σK(x)1/√K

when B(y) = {z : Φz = y}. One can generalize this result to measure the
reconstruction error using the ℓp-norm for any p ∈ [1, 2]. For example, by a slight
modification of these arguments, one can also show that ∥x̂ − x∥1 ≤ C0σK(x)1
(see [link]). This leads us to ask whether we might replace the bound for the ℓ2 error
with a result of the form ∥x̂ − x∥2 ≤ CσK(x)2. Unfortunately, obtaining such a
result requires an unreasonably large number of measurements, as quantified by the
following theorem of [link].
(Theorem 5.1 of [link])

Suppose that Φ is an M × N  matrix and that Δ : RM → RN  is a recovery algorithm
that satisfies
Equation:

∥x − Δ(Φx)∥2 ≤ CσK(x)2

for some K ≥ 1, then M > (1 − √1 − 1/C 2)N .

We begin by letting h ∈ RN  denote any vector in N (Φ). We write h = hΛ + hΛc

where Λ is an arbitrary set of indices satisfying |Λ| ≤ K. Set x = hΛc , and note that 
Φx = ΦhΛc = Φh − ΦhΛ = −ΦhΛ since h ∈ N (Φ). Since hΛ ∈ ΣK , [link]



implies that Δ (Φx) = Δ (−ΦhΛ) = −hΛ. Hence, 
∥x − Δ(Φx)∥2 = ∥hΛc − (−hΛ)∥2 = ∥h∥2. Furthermore, we observe that 
σK(x)2 ≤ ∥x∥2, since by definition σK(x)2 ≤ ∥x − x̃∥2 for all x̃ ∈ ΣK , including 
x̃ = 0. Thus ∥h∥2 ≤ C∥hΛc∥2. Since ∥h∥2

2 = ∥hΛ∥2
2 + ∥hΛc∥2

2, this yields
Equation:

∥hΛ∥2
2 = ∥h∥2

2 − ∥hΛc∥2
2 ≤ ∥h∥2

2 −
1

C 2
∥h∥2

2 = (1 −
1

C 2
)∥h∥2

2.

This must hold for any vector h ∈ N (Φ) and for any set of indices Λ such that 
|Λ| ≤ K. In particular, let {vi}

N−M
i=1  be an orthonormal basis for N (Φ), and define

the vectors {hi}
N
i=1 as follows:

Equation:

hj =
N−M

∑
i=1

vi (j)vi.

We note that hj = ∑N−M
i=1 ⟨ej, vi⟩vi where ej denotes the vector of all zeros except

for a 1 in the j-th entry. Thus we see that hj = PN ej where PN  denotes an
orthogonal projection onto N (Φ). Since ∥PN ej∥

2
2 + ∥P ⊥

N
ej∥

2

2
= ∥ej∥

2
2 = 1, we

have that ∥hj∥2 ≤ 1. Thus, by setting Λ = {j} for hj we observe that
Equation:

N−M

∑
i=1

|vi (j)|2

2

= |hj (j)|2 ≤ (1 −
1

C 2
)∥hj∥

2
2 ≤ 1 −

1

C 2
.

Summing over j = 1, 2, ..., N , we obtain
Equation:

N√1 − 1/C 2 ≥
N

∑
j=1

N−M

∑
i=1

|vi (j)|2 =
N−M

∑
i=1

N

∑
j=1

|vi (j)|2 =
N−M

∑
i=1

∥vi∥
2
2 = N − M,

and thus M ≥ (1 − √1 − 1/C 2)N  as desired.∣ ∣



Thus, if we want a bound of the form [link] that holds for all signals x with a constant
C ≈ 1, then regardless of what recovery algorithm we use we will need to take 
M ≈ N  measurements. However, in a sense this result is overly pessimistic, and we
will now see that the results we just established for signal recovery in noise can
actually allow us to overcome this limitation by essentially treating the approximation
error as noise.

Towards this end, notice that all the results concerning ℓ1 minimization stated thus far
are deterministic instance-optimal guarantees that apply simultaneously to all x given
any matrix that satisfies the restricted isometry property (RIP). This is an important
theoretical property, but as noted in "Matrices that satisfy the RIP", in practice it is
very difficult to obtain a deterministic guarantee that the matrix Φ satisfies the RIP. In
particular, constructions that rely on randomness are only known to satisfy the RIP
with high probability. As an example, recall Theorem 1 from "Matrices that satisfy
the RIP", which opens the door to slightly weaker results that hold only with high
probability.

Fix δ ∈ (0, 1). Let Φ be an M × N  random matrix whose entries φij are i.i.d. with 
φij drawn according to a strictly sub-Gaussian distribution with c2 = 1/M . If
Equation:

M ≥ κ1K log (
N

K
),

then Φ satisfies the RIP of order K with the prescribed δ with probability exceeding 
1 − 2e−κ2M , where κ1 is arbitrary and κ2 = δ2/2κ*− log (42e/δ)/κ1.

Even within the class of probabilistic results, there are two distinct flavors. The
typical approach is to combine a probabilistic construction of a matrix that will satisfy
the RIP with high probability with the previous results in this chapter. This yields a
procedure that, with high probability, will satisfy a deterministic guarantee applying
to all possible signals x. A weaker kind of result is one that states that given a signal 
x, we can draw a random matrix Φ and with high probability expect certain
performance for that signal x. This type of guarantee is sometimes called instance-
optimal in probability. The distinction is essentially whether or not we need to draw a
new random Φ for each signal x. This may be an important distinction in practice, but
if we assume for the moment that it is permissible to draw a new matrix Φ for each x,
then we can see that [link] may be somewhat pessimistic. In order to establish our
main result we will rely on the fact, previously used in "Matrices that satisfy the RIP",
that sub-Gaussian matrices preserve the norm of an arbitrary vector with high
probability. Specifically, a slight modification of Corollary 1 from "Matrices that



satisfy the RIP" shows that for any x ∈ R
N , if we choose Φ according to the

procedure in [link], then we also have that
Equation:

P(∥ Φx ∥2
2 ≥ 2∥ x ∥2

2) ≤exp (−κ3M)

with κ3 = 4/κ*. Using this we obtain the following result.

Let x ∈ R
N  be fixed. Set δ2K < √2 − 1 Suppose that Φ is an M × N  sub-Gaussian

random matrix with M ≥ κ1K log (N/K). Suppose we obtain measurements of the
form y = Φx. Set ϵ = 2σK(x)2. Then with probability exceeding 
1 − 2 exp (−κ2M)− exp (−κ3M), when B (y) = {z : ∥Φz − y∥2 ≤ ϵ}, the
solution x̂ to [link] obeys
Equation:

∥x̂ − x∥2 ≤
8√1 + δ2K − (1 + √2)δ2K

1 − (1 + √2)δ2K

σK(x)2.

First we recall that, as noted above, from [link] we have that Φ will satisfy the RIP of
order 2K with probability at least 1 − 2 exp (−κ2M). Next, let Λ denote the index
set corresponding to the K entries of x with largest magnitude and write 
x = xΛ + xΛc . Since xΛ ∈ ΣK , we can write Φx = ΦxΛ + ΦxΛc = ΦxΛ + e. If Φ
is sub-Gaussian then from Lemma 2 from "Sub-Gaussian random variables" we have
that ΦxΛc  is also sub-Gaussian, and one can apply [link] to obtain that with
probability at least 1− exp (−κ3M), ∥ΦxΛc∥2 ≤ 2∥xΛc∥2 = 2σK(x)2. Thus,
applying the union bound we have that with probability exceeding 
1 − 2 exp (−κ2M)− exp (−κ3M), we satisfy the necessary conditions to apply
Theorem 1 from "Signal recovery in noise" to xΛ, in which case σK(xΛ)1 = 0 and
hence
Equation:

∥x̂ − xΛ∥2 ≤ 2C2σK(x)2.

From the triangle inequality we thus obtain
Equation:

∥x̂ − x∥2 = ∥x̂ − xΛ + xΛ − x∥2 ≤ ∥x̂ − xΛ∥2 + ∥xΛ − x∥2 ≤ (2C2 + 1)σK(x)2



which establishes the theorem.

Thus, although it is not possible to achieve a deterministic guarantee of the form in
[link] without taking a prohibitively large number of measurements, it is possible to
show that such performance guarantees can hold with high probability while
simultaneously taking far fewer measurements than would be suggested by [link].
Note that the above result applies only to the case where the parameter is selected
correctly, which requires some limited knowledge of x, namely σK(x)2. In practice
this limitation can easily be overcome through a parameter selection technique such
as cross-validation [link], but there also exist more intricate analyses of ℓ1

minimization that show it is possible to obtain similar performance without requiring
an oracle for parameter selection [link]. Note that [link] can also be generalized to
handle other measurement matrices and to the case where x is compressible rather
than sparse. Moreover, this proof technique is applicable to a variety of the greedy
algorithms described later in this course that do not require knowledge of the noise
level to establish similar results [link], [link].



The cross-polytope and phase transitions
In this module we provide an overview of the relationship between L1
minimization and random projections of the cross-polytope.

The analysis of ℓ1 minimization based on the restricted isometry property
(RIP) described in "Signal recovery in noise" allows us to establish a
variety of guarantees under different noise settings, but one drawback is that
the analysis of how many measurements are actually required for a matrix
to satisfy the RIP is relatively loose. An alternative approach to analyzing 
ℓ1 minimization algorithms is to examine them from a more geometric
perspective. Towards this end, we define the closed ℓ1 ball, also known as
the cross-polytope:
Equation:

C N = {x ∈ R
N : ∥x∥1 ≤ 1}.

Note that C N  is the convex hull of 2N  points {pi}
2N
i=1. Let ΦC N ⊆ R

M

denote the convex polytope defined as either the convex hull of {Φpi}
2N
i=1

or equivalently as
Equation:

ΦC N = {y ∈ R
M : y = Φx, x ∈ C N}.

For any x ∈ ΣK = {x : ∥x∥0 ≤ K}, we can associate a K-face of C N

with the support and sign pattern of x. One can show that the number of K-
faces of ΦC N  is precisely the number of index sets of size K for which
signals supported on them can be recovered by
Equation:

x̂ = argmin
z

∥z∥1 subject to z ∈ B (y).

with B(y) = {z : Φz = y}. Thus, ℓ1 minimization yields the same solution
as ℓ0 minimization for all x ∈ ΣK  if and only if the number of K-faces of 
ΦC N  is identical to the number of K-faces of C N . Moreover, by counting



the number of K-faces of ΦC N , we can quantify exactly what fraction of
sparse vectors can be recovered using ℓ1 minimization with Φ as our
sensing matrix. See [link], [link], [link], [link], [link] for more details
and [link] for an overview of the implications of this body of work. Note
also that by replacing the cross-polytope with certain other polytopes (the
simplex and the hypercube), one can apply the same technique to obtain
results concerning the recovery of more limited signal classes, such as
sparse signals with nonnegative or bounded entries [link].

Given this result, one can then study random matrix constructions from this
perspective to obtain probabilistic bounds on the number of K-faces of 
ΦC N  with Φ is generated at random, such as from a Gaussian distribution.
Under the assumption that K = ρM  and M = γN , one can obtain
asymptotic results as N → ∞. This analysis leads to the phase transition
phenomenon, where for large problem sizes there are sharp thresholds
dictating that the fraction of K-faces preserved will tend to either one or
zero with high probability, depending on ρ and γ [link].

These results provide sharp bounds on the minimum number of
measurements required in the noiseless setting. In general, these bounds are
significantly stronger than the corresponding measurement bounds obtained
within the RIP-based framework given in "Noise-free signal recovery",
which tend to be extremely loose in terms of the constants involved.
However, these sharper bounds also require somewhat more intricate
analysis and typically more restrictive assumptions on Φ (such as it being
Gaussian). Thus, one of the main strengths of the RIP-based analysis
presented in "Noise-free signal recovery" and "Signal recovery in noise" is
that it gives results for a broad class of matrices that can also be extended to
noisy settings.



Sparse recovery algorithms
This module introduces some of the tradeoffs involved in the design of
sparse recovery algorithms.

Given noisy compressive measurements y = Φx + e of a signal x, a core
problem in compressive sensing (CS) is to recover a sparse signal x from a
set of measurements y. Considerable efforts have been directed towards
developing algorithms that perform fast, accurate, and stable reconstruction
of x from y. As we have seen in previous chapters, a “good” CS matrix Φ
typically satisfies certain geometric conditions, such as the restricted
isometry property (RIP). Practical algorithms exploit this fact in various
ways in order to drive down the number of measurements, enable faster
reconstruction, and ensure robustness to both numerical and stochastic
errors.

The design of sparse recovery algorithms are guided by various criteria.
Some important ones are listed as follows.

Minimal number of measurements.   Sparse recovery algorithms
must require approximately the same number of measurements (up to a
small constant) required for the stable embedding of K-sparse signals.
Robustness to measurement noise and model mismatch   Sparse
recovery algorithms must be stable with regards to perturbations of the
input signal, as well as noise added to the measurements; both types of
errors arise naturally in practical systems.
Speed.   Sparse recovery algorithms must strive towards expending
minimal computational resources, Keeping in mind that a lot of
applications in CS deal with very high-dimensional signals.
Performance guarantees.   In previous chapters, we have already
seen a range of performance guarantees that hold for sparse signal
recovery using ℓ1 minimization. In evaluating other algorithms, we
will have the same considerations. For example, we can choose to
design algorithms that possess instance-optimal or probabilistic
guarantees. We can also choose to focus on algorithm performance for
the recovery of exactly K-sparse signals x, or consider performance
for the recovery of general signals xs. Alternately, we can also



consider algorithms that are accompanied by performance guarantees
in either the noise-free or noisy settings.

A multitude of algorithms satisfying some (or even all) of the above have
been proposed in the literature. While it is impossible to describe all of
them in this chapter, we refer the interested reader to the DSP resources
webpage for a more complete list of recovery algorithms. Broadly speaking,
recovery methods tend to fall under three categories: convex optimization-
based approaches, greedy methods, and combinatorial techniques. The rest
of the chapter discusses several properties and example algorithms of each
flavor of CS reconstruction.

http://dsp.rice.edu/cs


Convex optimization-based methods
This module provides an overview of convex optimization approaches to
sparse signal recovery.

An important class of sparse recovery algorithms fall under the purview of
convex optimization. Algorithms in this category seek to optimize a convex
function  of the unknown variable  over a (possibly unbounded)
convex subset of .

Setup

Let  be a convex sparsity-promoting cost function (i.e.,  is small
for sparse .) To recover a sparse signal representation  from
measurements , we may either solve
Equation:

when there is no noise, or solve
Equation:

when there is noise in the measurements. Here,  is a cost function that
penalizes the distance between the vectors  and . For an appropriate
penalty parameter , [link] is equivalent to the unconstrained formulation:
Equation:

for some . The parameter  may be chosen by trial-and-error, or by
statistical techniques such as cross-validation [link].



For convex programming algorithms, the most common choices of  and 
are usually chosen as follows: , the -norm of , and 

, the -norm of the error between the observed
measurements and the linear projections of the target vector . In statistics,
minimizing this  subject to  is known as the Lasso problem.
More generally,  acts as a regularization term and can be replaced by
other, more complex, functions; for example, the desired signal may be
piecewise constant, and simultaneously have a sparse representation under a
known basis transform . In this case, we may use a mixed regularization
term:
Equation:

It might be tempting to use conventional convex optimization packages for
the above formulations ([link], [link], and [link]). Nevertheless, the above
problems pose two key challenges which are specific to practical problems
encountered in CS: (i) real-world applications are invariably large-scale (an
image of a resolution of  pixels leads to optimization over a
million variables, well beyond the reach of any standard optimization
software package); (ii) the objective function is nonsmooth, and standard
smoothing techniques do not yield very good results. Hence, for these
problems, conventional algorithms (typically involving matrix
factorizations) are not effective or even applicable. These unique challenges
encountered in the context of CS have led to considerable interest in
developing improved sparse recovery algorithms in the optimization
community.

Linear programming

In the noiseless case, the -minimization problem (obtained by substituting
 in [link]) can be recast as a linear program (LP) with

equality constraints. These can be solved in polynomial time ( )
using standard interior-point methods [link]. This was the first feasible
reconstruction algorithm used for CS recovery and has strong theoretical



guarantees, as shown earlier in this course. In the noisy case, the problem
can be recast as a second-order cone program (SOCP) with quadratic
constraints. Solving LPs and SOCPs is a principal thrust in optimization
research; nevertheless, their application in practical CS problems is limited
due to the fact that both the signal dimension , and the number of
constraints , can be very large in many scenarios. Note that both LPs and
SOCPs correspond to the constrained formulations in [link] and [link] and
are solved using first order interior-point methods.

A newer algorithm called “l1_ls" [link] is based on an interior-point
algorithm that uses a preconditioned conjugate gradient (PCG) method to
approximately solve linear systems in a truncated-Newton framework. The
algorithm exploits the structure of the Hessian to construct their
preconditioner; thus, this is a second order method. Computational results
show that about a hundred PCG steps are sufficient for obtaining accurate
reconstruction. This method has been typically shown to be slower than
first-order methods, but could be faster in cases where the true target signal
is highly sparse.

Fixed-point continuation

As opposed to solving the constrained formulation, an alternate approach is
to solve the unconstrained formulation in [link]. A widely used method for
solving -minimization problems of the form
Equation:

for a convex and differentiable , is an iterative procedure based on
shrinkage (also called soft thresholding; see [link] below). In the context of
solving [link] with a quadratic , this method was independently proposed
and analyzed in [link], [link], [link], [link], and then further studied or
extended in [link], [link], [link], [link], [link], [link].
Shrinkage is a classic
method used in wavelet-based image denoising. The shrinkage operator on
any scalar component can be defined as follows:
Equation:



This concept can be used effectively to solve [link]. In particular, the basic
algorithm can be written as following the fixed-point iteration: for 

, the  coefficient of  at the  time step is given by
Equation:

where  serves as a step-length for gradient descent (which may vary
with ) and  is as specified by the user. It is easy to see that the larger  is,
the larger the allowable distance between  and . For a quadratic
penalty term , the gradient  can be easily computed as a linear
function of ; thus each iteration of [link] essentially boils down to a small
number of matrix-vector multiplications.

The simplicity of the iterative approach is quite appealing, both from a
computational, as well as a code-design standpoint. Various modifications,
enhancements, and generalizations to this approach have been proposed,
both to improve the efficiency of the basic iteration in [link], and to extend
its applicability to various kinds of  [link], [link], [link]. In principle, the
basic iteration in [link] would not be practically effective without a
continuation (or path-following) strategy [link], [link] in which we choose a
gradually decreasing sequence of values for the parameter  to guide the
intermediate iterates towards the final optimal solution.

This procedure is known as continuation; in [link], the performance of an
algorithm known as Fixed-Point Continuation (FPC) has been compared
favorably with another similar method known as Gradient Projection for
Sparse Reconstruction (GPSR) [link] and “l1_ls” [link]. A key aspect to
solving the unconstrained optimization problem is the choice of the
parameter . As discussed above, for CS recovery,  may be chosen by trial



and error; for the noiseless constrained formulation, we may solve the
corresponding unconstrained minimization by choosing a large value for .

In the case of recovery from noisy compressive measurements, a commonly
used choice for the convex cost function  is the square of the norm of
the residual. Thus we have:
Equation:

For this particular choice of penalty function, [link] reduces to the
following iteration:
Equation:

which is run until convergence to a fixed point. The algorithm is detailed in
pseudocode form below.

Inputs: CS matrix , signal measurements , 
parameter sequence 

Outputs: Signal estimate 

initialize: , , .

while ħalting criterion false do

   1. 

   2.  {take a gradient step}

   3.  {perform soft 
thresholding}

   4.  {update measurement residual}


end while

return 




Bregman iteration methods

It turns out that an efficient method to obtain the solution to the constrained
optimization problem in [link] can be devised by solving a small number of
the unconstrained problems in the form of [link]. These subproblems are
commonly referred to as Bregman iterations. A simple version can be
written as follows:
Equation:

The problem in the second step can be solved by the algorithms reviewed
above. Bregman iterations were introduced in [link] for constrained total
variation minimization problems, and was proved to converge for closed,
convex functions . In [link], it is applied to [link] for 
and shown to converge in a finite number of steps for any . For
moderate , the number of iterations needed is typically lesser than 5.
Compared to the alternate approach that solves [link] through directly
solving the unconstrained problem in [link] with a very large , Bregman
iterations are often more stable and sometimes much faster.

Discussion

All the methods discussed in this section optimize a convex function
(usually the -norm) over a convex (possibly unbounded) set. This implies
guaranteed convergence to the global optimum. In other words, given that
the sampling matrix  satisfies the conditions specified in "Signal recovery
via  minimization", convex optimization methods will recover the
underlying signal . In addition, convex relaxation methods also guarantee
stable recovery by reformulating the recovery problem as the SOCP, or the
unconstrained formulation.



Greedy algorithms
In this module we provide an overview of some of the most common
greedy algorithms and their application to the problem of sparse recovery.

Setup

As opposed to solving a (possibly computationally expensive) convex
optimization program, an alternate flavor to sparse recovery is to apply
methods of sparse approximation. Recall that the goal of sparse recovery is
to recover the sparsest vector x which explains the linear measurements y.
In other words, we aim to solve the (nonconvex) problem:
Equation:

min
I

{|I | : y = ∑
i∈I

φixi},

where I  denotes a particular subset of the indices i = 1, ..., N , and φi

denotes the ith column of Φ. It is well known that searching over the power
set formed by the columns of Φ for the optimal subset I * with smallest
cardinality is NP-hard. Instead, classical sparse approximation methods
tackle this problem by greedily selecting columns of Φ and forming
successively better approximations to y.

Matching Pursuit

Matching Pursuit (MP), named and introduced to the signal processing
community by Mallat and Zhang [link], [link], is an iterative greedy
algorithm that decomposes a signal into a linear combination of elements
from a dictionary. In sparse recovery, this dictionary is merely the sampling
matrix Φ ∈ R

M×N ; we seek a sparse representation (x) of our “signal” y.

MP is conceptually very simple. A key quantity in MP is the residual 
r ∈ R

M ; the residual represents the as-yet “unexplained” portion of the
measurements. At each iteration of the algorithm,
we select a vector from
the dictionary that is maximally correlated with the residual r:



Equation:

λk =argmax
λ

⟨rk, φλ⟩φλ

∥ φλ ∥2
.

Once this column is selected, we possess a “better” representation of the
signal, since a new coefficient indexed by λk has been added to our signal
approximation. Thus, we update both the residual and the approximation as
follows:
Equation:

and repeat the iteration. A suitable stopping criterion is when the norm of r
becomes smaller than some quantity. MP is described in pseudocode form
below.

Although MP is intuitive and can find an accurate approximation of the
signal, it possesses two major drawbacks: (i) it offers no guarantees in terms

Inputs: Measurement matrix Φ, signal measurements 
y

Outputs: Sparse signal x̂

initialize: x̂0 = 0, r = y, i = 0.

while ħalting criterion false do

   1. i ← i + 1

   2. b ← ΦT r {form residual signal estimate}

   3. x̂i ← x̂i−1 + T (1) {update largest magnitude 
coefficient}

   4. r ← r − Φx̂i {update measurement residual}

end while

return x̂ ← x̂i


rk = rk−1 −
⟨rk−1, φλk

⟩φλk

∥ φλk
∥2

,

x̂λk
= x̂λk

+ ⟨rk−1, φλk
⟩.



of recovery error; indeed, it does not exploit the special structure present in
the dictionary Φ; (ii) the required number of iterations required can be quite
large. The complexity of MP is O(MNT ) [link] , where T  is the number of
MP iterations

Orthogonal Matching Pursuit (OMP)

Matching Pursuit (MP) can prove to be computationally infeasible for many
problems, since the complexity of MP grows linearly in the number of
iterations T . By employing a simple modification of MP, the maximum
number of MP iterations can be upper bounded as follows.
At any iteration 
k, Instead of subtracting the contribution of the dictionary element with
which the residual r is maximally correlated, we compute the projection of 
r onto the orthogonal subspace to the linear span of the currently selected
dictionary elements. This quantity thus better represents the “unexplained”
portion of the residual, and is subtracted from r to form a new residual, and
the process is repeated. If ΦΩ is the submatrix formed by the columns of Φ
selected at time step t, the following operations are performed:
Equation:

These steps are repeated until convergence. This is known as Orthogonal
Matching Pursuit (OMP) [link]. Tropp and Gilbert [link] proved that OMP
can be used to recover a sparse signal with high probability using
compressive measurements. The algorithm converges in at most K
iterations, where K is the sparsity, but requires the added computational cost
of orthogonalization at each iteration. Indeed, the total complexity of OMP
can be shown to be O(MNK).

While OMP is provably fast and can be shown to lead to exact recovery, the
guarantees accompanying OMP for sparse recovery are weaker than those
associated with optimization techniques. In particular, the reconstruction

xk =argmin
x

∥ y − ΦΩx ∥2,

α̂t = ΦΩxt,

rt = y − α̂t.



guarantees are not uniform, i.e., it cannot be shown that a single
measurement matrix with M = CK log N  rows can be used to recover
every possible K−sparse signal with M = CK log N  measurements.
(Although it is possible to obtain such uniform guarantees when it is
acceptable to take more measurements. For example, see [link].) Another
issue with OMP is robustness to noise; it is unknown whether the solution
obtained by OMP will only be perturbed slightly by the addition of a small
amount of noise in the measurements. Nevertheless, OMP is an efficient
method for CS recovery, especially when the signal sparsity K is low. A
pseudocode representation of OMP is shown below.

Stagewise Orthogonal Matching Pursuit (StOMP)

Orthogonal Matching Pursuit is ineffective when the signal is not very
sparse as the computational cost increases quadratically with the number of
nonzeros K. In this setting, Stagewise Orthogonal Matching Pursuit
(StOMP) [link] is a better choice for approximately sparse signals in a
large-scale setting.

Inputs: Measurement matrix Φ, signal measurements 
y

Outputs: Sparse representation x̂


Initialize: θ̂0 = 0, r = y, Ω = ∅, i = 0.

while ħalting criterion false do

   1. i ← i + 1

   2. b ← ΦT r {form residual signal estimate}

   3. Ω ← Ω ∪ supp(T(b, 1)) {add index of 
residual's largest magnitude entry to signal 
support}


   4. x̂i
Ω

← Φ
†
Ωx, x̂i ΩC ← 0 {form signal 

estimate}

   5. r ← y − Φx̂i {update measurement residual}

end while

return x̂ ← x̂i
∣ ∣



StOMP offers considerable computational advantages over ℓ1 minimization
and Orthogonal Matching Pursuit for large scale problems with sparse
solutions.
The algorithm starts with an initial residual r0 = y and calculates
the set of all projections ΦT rk−1 at the kth stage (as in OMP). However,
instead of picking a single dictionary element, it uses a threshold parameter 
τ  to determine the next best set of columns of Φ whose correlations with the
current residual exceed τ . The new residual is calculated using a least
squares estimate of the signal using this expanded set of columns, just as
before.

Unlike OMP, the number of iterations in StOMP is fixed and chosen before
hand; S = 10 is recommended in [link]. In general, the complexity of
StOMP is O(KN log N) , a significant improvement over OMP. However,
StOMP does not bring in its wake any reconstruction guarantees. StOMP
also has moderate memory requirements compared to OMP where the
orthogonalization requires the maintenance of a Cholesky factorization of
the dictionary elements.

Compressive Sampling Matching Pursuit (CoSaMP)

Greedy pursuit algorithms (such as MP and OMP) alleviate the issue of
computational complexity encountered in optimization-based sparse
recovery, but lose the associated strong guarantees for uniform signal
recovery, given a requisite number of measurements of the signal. In
addition, it is unknown whether these greedy algorithms are robust to signal
and/or measurement noise.

There have been some recent attempts to develop greedy algorithms
(Regularized OMP [link], [link], Compressive Sampling Matching Pursuit
(CoSaMP) [link] and Subspace Pursuit [link]) that bridge this gap between
uniformity and complexity. Intriguingly, the restricted isometry property
(RIP), developed in the context of analyzing ℓ1 minimization, plays a
central role in such algorithms. Indeed, if the matrix Φ satisfies the RIP of
order K, this implies that every subset of K columns of the matrix is
approximately orthonormal. This property is used to prove strong
convergence results of these greedy-like methods.



One variant of such an approach is employed by the CoSaMP algorithm. An
interesting feature of CoSaMP is that unlike MP, OMP and StOMP, new
indices in a signal estimate can be added as well as deleted from the current
set of chosen indices. In contrast, greedy pursuit algorithms suffer from the
fact that a chosen index (or equivalently, a chosen atom from the dictionary 
Φ remains in the signal representation until the end. A brief description of
CoSaMP is as follows: at the start of a given iteration i, suppose the signal
estimate is x̂i−1.

Form signal residual estimate: e ← ΦT r
Find the biggest 2K coefficients of the signal residual e; call this set of
indices Ω.
Merge supports: T ← Ω ∪ supp(x̂i−1) .
Form signal estimate b by subspace projection: b|T ← Φ

†
T y, b|T C ← 0

.
Prune b by retaining its K largest coefficients. Call this new estimate 
x̂i.
Update measurement residual: r ← y − Φx̂i.

This procedure is summarized in pseudocode form below.

Inputs: Measurement matrix Φ, measurements y, 
signal sparsity K

Output: K-sparse approximation x̂ to true signal 
representation x

Initialize: x̂0 = 0 , r = y; i = 0

while ħalting criterion false do

   1. i ← i + 1

   2. e ← ΦT r {form signal residual estimate}

   3. Ω ← supp(T(e, 2K)) {prune signal residual 
estimate}

   4. T ← Ω ∪ supp(x̂i−1) {merge supports}


   5. b|T ← Φ
†
T y, b|T C {form signal estimate}


   6. x̂i ← T (b, K) {prune signal estimate}

   7. r ← y − Φx̂i {update measurement residual}

end while



As discussed in [link], the key computational issues for CoSaMP are the
formation of the signal residual, and the method used for subspace
projection in the signal estimation step. Under certain general assumptions,
the computational cost of CoSaMP can be shown to be O(MN), which is
independent of the sparsity of the original signal. This represents an
improvement over both greedy algorithms as well as convex methods.

While CoSaMP arguably represents the state of the art in sparse recovery
algorithm performance, it possesses one drawback: the algorithm requires
prior knowledge of the sparsity K of the target signal. An incorrect choice
of input sparsity may lead to a worse guarantee than the actual error
incurred by a weaker algorithm such as OMP. The stability bounds
accompanying CoSaMP ensure that the error due to an incorrect parameter
choice is bounded, but it is not yet known how these bounds translate into
practice.

Iterative Hard Thresholding

Iterative Hard Thresholding (IHT) is a well-known algorithm for solving
nonlinear inverse problems. The structure of IHT is simple: starting with an
initial estimate x̂0, iterative hard thresholding (IHT) obtains a sequence of
estimates using the iteration:
Equation:

x̂i+1 = T (x̂i + ΦT (y − Φx̂i), K).

In [link], Blumensath and Davies proved that this sequence of iterations
converges to a fixed point x̂; further, if the matrix Φ possesses the RIP, they
showed that the recovered signal x̂ satisfies an instance-optimality
guarantee of the type described earlier.
The guarantees (as well as the proof
technique) are reminiscent of the ones that are derived in the development
of other algorithms such as ROMP and CoSaMP.

end while

return x̂ ← x̂i




Discussion

While convex optimization techniques are powerful methods for computing
sparse representations, there are also a variety of greedy/iterative methods
for solving such problems. Greedy algorithms rely on iterative
approximation of the signal coefficients and support, either by iteratively
identifying the support of the signal until a convergence criterion is met, or
alternatively by obtaining an improved estimate of the sparse signal at each
iteration by accounting for the mismatch to the measured data. Some greedy
methods can actually be shown to have performance guarantees that match
those obtained for convex optimization approaches. In fact, some of the
more sophisticated greedy algorithms are remarkably similar to those used
for ℓ1 minimization described previously. However, the techniques required
to prove performance guarantees are substantially different. There also exist
iterative techniques for sparse recovery based on message passing schemes
for sparse graphical models. In fact, some greedy algorithms (such as those
in [link], [link]) can be directly interpreted as message passing
methods [link].



Combinatorial algorithms
This module introduces the count-min and count-median sketches as
representative examples of combinatorial algorithms for sparse recovery.

In addition to convex optimization and greedy pursuit approaches, there is
another important class of sparse recovery algorithms that we will refer to
as combinatorial algorithms. These algorithms, mostly developed by the
theoretical computer science community, in many cases pre-date the
compressive sensing literature but are highly relevant to the sparse signal
recovery problem.

Setup

The oldest combinatorial algorithms were developed in the context of group
testing [link], [link], [link]. In the group testing problem, we suppose that
there are N  total items, of which an unknown subset of K elements are
anomalous and need to be identified. For example, we might wish to
identify defective products in an industrial setting, or identify a subset of
diseased tissue samples in a medical context. In both of these cases the
vector x indicates which elements are anomalous, i.e., xi ≠ 0 for the K
anomalous elements and xi = 0 otherwise. Our goal is to design a
collection of tests that allow us to identify the support (and possibly the
values of the nonzeros) of x while also minimizing the number of tests
performed. In the simplest practical setting these tests are represented by a
binary matrix Φ whose entries φij are equal to 1 if and only if the jth item is
used in the ith test. If the output of the test is linear with respect to the
inputs, then the problem of recovering the vector x is essentially the same
as the standard sparse recovery problem.

Another application area in which combinatorial algorithms have proven
useful is computation on data streams [link], [link]. Suppose that xi
represents the number of packets passing through a network router with
destination i. Simply storing the vector x is typically infeasible since the
total number of possible destinations (represented by a 32-bit IP address) is 
N = 232. Thus, instead of attempting to store x directly, one can store 
y = Φx where Φ is an M × N  matrix with M ≪ N . In this context the
vector y is often called a sketch. Note that in this problem y is computed in



a different manner than in the compressive sensing context. Specifically, in
the network traffic example we do not ever observe xi directly; rather, we
observe increments to xi (when a packet with destination i passes through
the router). Thus we construct y iteratively by adding the ith column to y
each time we observe an increment to xi, which we can do since y = Φx is
linear. When the network traffic is dominated by traffic to a small number
of destinations, the vector x is compressible, and thus the problem of
recovering x from the sketch Φx is again essentially the same as the sparse
recovery problem.

Several combinatorial algorithms for sparse recovery have been developed
in the literature. A non-exhaustive list includes Random Fourier
Sampling [link], HHS Pursuit [link], and Sparse Sequential Matching
Pursuit [link]. We do not provide a full discussion of each of these
algorithms; instead, we describe two simple methods that highlight the
flavors of combinatorial sparse recovery — count-min and count-median.

The count-min sketch

Define H as the set of all discrete-valued functions 
h : {1, ...,N} → {1, ...,m}. Note that H is a finite set of size mN. Each
function h ∈ H can be specified by a binary characteristic matrix φ(h) of
size m × N , with each column being a binary vector with exactly one 1 at
the location j , where j = h(i). To construct the overall sampling matrix Φ,
we choose d functions h1, ...,hd independently from the uniform
distribution defined on H, and vertically concatenate their characteristic
matrices. Thus, if M = md, Φ is a binary matrix of size M × N  with each
column containing exactly d ones.

Now given any signal x, we acquire linear measurements y = Φx. It is easy
to visualize the measurements via the following two properties. First, the
coefficients of the measurement vector y are naturally grouped according to
the “mother” binary functions {h1, ...,hd}. Second, consider the ith
coefficient of the measurement vector y, which corresponds to the mother
binary function h. Then, the expression for yi is simply given by:
Equation:



yi = ∑
j:h(j)=i

xj.

In other words, for a fixed signal coefficient index j, each measurement yi
as expressed above consists of an observation of xj corrupted by other
signal coefficients mapped to the same i by the function h. Signal recovery
essentially consists of estimating the signal values from these “corrupted"
observations.

The count-min algorithm is useful in the special case where the entries of
the original signal are positive. Given measurements y using the sampling
matrix Φ as constructed above, the estimate of the jth signal entry is given
by:
Equation:

x̂j =min
l

yi : hl (j) = i.

Intuitively, this means that the estimate of xj is formed by simply looking at
all measurements that comprise of xj corrupted by other signal values, and
picking the one with the lowest magnitude.
Despite the simplicity of this
algorithm, it is accompanied by an arguably powerful instance-optimality
guarantee: if d = C log N  and m = 4/αK, then with high probability, the
recovered signal x̂ satisfies:
Equation:

∥ x−x̂ ∥∞≤ α/K ⋅ ∥ x − x* ∥1,

where x* represents the best K-term approximation of x in the ℓ1 sense.

The count-median sketch

For the general setting when the coefficients of the original signal could be
either positive or negative, a similar algorithm known as count-median can
be used. Instead of picking the minimum of the measurements, we compute



the median of all those measurements that are comprised of a corrupted
version of xj and declare it as the signal coefficient estimate, i.e.,
Equation:

x̂j =median
l

yi : hl (j) = i.

The recovery guarantees for count-median are similar to that for count-min,
with a different value of the failure probability constant. An important
feature of both count-min and count-median is that they require that the
measurements be perfectly noiseless, in contrast to optimization/greedy
algorithms which can tolerate small amounts of measurement noise.

Summary

Although we ultimately wish to recover a sparse signal from a small
number of linear measurements in both of these settings, there are some
important differences between such settings and the compressive sensing
setting studied in this course. First, in these settings it is natural to assume
that the designer of the reconstruction algorithm also has full control over Φ
, and is thus free to choose Φ in a manner that reduces the amount of
computation required to perform recovery. For example, it is often useful to
design Φ so that it has few nonzeros, i.e., the sensing matrix itself is also
sparse [link], [link], [link]. In general, most methods involve careful
construction of the sensing matrix Φ, which is in contrast with the
optimization and greedy methods that work with any matrix satisfying a
generic condition such as the restricted isometry property. This additional
degree of freedom can lead to significantly faster algorithms [link], [link],
[link], [link].

Second, note that the computational complexity of all the convex methods
and greedy algorithms described above is always at least linear in N , since
in order to recover x we must at least incur the computational cost of
reading out all N  entries of x. This may be acceptable in many typical
compressive sensing applications, but this becomes impractical when N  is
extremely large, as in the network monitoring example. In this context, one
may seek to develop algorithms whose complexity is linear only in the
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length of the representation of the signal, i.e., its sparsity K. In this case the
algorithm does not return a complete reconstruction of x but instead returns
only its K largest elements (and their indices). As surprising as it may
seem, such algorithms are indeed possible. See [link], [link] for examples.



Bayesian methods
This module provides an overview of the application of Bayesian methods
to compressive sensing and sparse recovery.

Setup

Throughout this course, we have almost exclusively worked within a
deterministic signal framework. In other words, our signal x is fixed and
belongs to a known set of signals. In this section, we depart from this
framework and assume that the sparse (or compressible) signal of interest
arises from a known probability distribution, i.e., we assume sparsity
promoting priors on the elements of x, and recover from the stochastic
measurements y = Φx a probability distribution on each nonzero element
of x. Such an approach falls under the purview of Bayesian methods for
sparse recovery.

The algorithms discussed in this section demonstrate a digression from the
conventional sparse recovery techniques typically used in compressive
sensing (CS). We note that none of these algorithms are accompanied by
guarantees on the number of measurements required, or the fidelity of
signal reconstruction; indeed, in a Bayesian signal modeling framework,
there is no well-defined notion of “reconstruction error”. However, such
methods do provide insight into developing recovery algorithms for rich
classes of signals, and may be of considerable practical interest.

Sparse recovery via belief propagation

As we will see later in this course, there are significant parallels to be drawn
between error correcting codes and sparse recovery [link]. In particular,
sparse codes such as LDPC codes have had grand success. The advantage
that sparse coding matrices may have in efficient encoding of signals and
their low complexity decoding algorithms, is transferable to CS encoding
and decoding with the use of sparse sensing matrices Φ. The sparsity in the 
Φ matrix is equivalent to the sparsity in LDPC coding graphs.
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A sensing matrix Φ that defines the relation between the signal x and
measurements y can be represented as a bipartite graph of signal coefficient
nodes x(i) and measurement nodes y(i) [link], [link]. The factor graph in
[link] represents the relationship between the signal coefficients and
measurements in the CS decoding problem.

The choice of signal probability density is of practical interest. In many
applications, the signals of interest need to be modeled as being
compressible (as opposed to being strictly sparse). This behavior is modeled
by a two-state Gaussian mixture distribution, with each signal coefficient
taking either a “large” or “small” coefficient value state. Assuming that the
elements of x are i.i.d., it can be shown that small coefficients occur more
frequently than the large coefficients. Other distributions besides the two-
state Gaussian may also be used to model the coefficients, for e.g., the i.i.d.
Laplace prior on the coefficients of x.

The ultimate goal is to estimate (i.e., decode) x, given y and Φ. The
decoding problem takes the form of a Bayesian inference problem in which

Factor graph depicting the relationship
between the variables involved in CS

decoding using BP. Variable nodes are black
and the constraint nodes are white.



we want to approximate the marginal distributions of each of the x(i)
coefficients conditioned on the observed measurements y(i). We can then
estimate the Maximum Likelihood Estimate (MLE), or the Maximum a
Posteriori (MAP) estimates of the coefficients from their distributions. This
sort of inference can be solved using a variety of methods; for example, the
popular belief propagation method (BP) [link] can be applied to solve for
the coefficients approximately. Although exact inference in arbitrary
graphical models is an NP hard problem, inference using BP can be
employed when Φ is sparse enough, i.e., when most of the entries in the
matrix are equal to zero.

Sparse Bayesian learning

Another probabilistic approach used to estimate the components of x is by
using Relevance Vector Machines (RVMs). An RVM is essentially a
Bayesian learning method that produces sparse classification by linearly
weighting a small number of fixed basis functions from a large dictionary of
potential candidates (for more details the interested reader may refer
to [link], [link]). From the CS perspective, we may view this as a method to
determine the elements of a sparse x which linearly weight the basis
functions comprising the columns of Φ.

The RVM setup employs a hierarchy of priors; first, a Gaussian prior is
assigned to each of the N  elements of x; subsequently, a Gamma prior is
assigned to the inverse-variance αi of the ith Gaussian prior. Therefore
each αi controls the strength of the prior on its associated weight in xi. If x
is the sparse vector to be reconstructed, its associated Gaussian prior is
given by:
Equation:

p (x|α) =
N

i=1

xi 0,α−1
i

and the Gamma prior on α is written as:
Equation:



p (α|a, b) =
N

i=1

Γ (αi|a, b)

The overall prior on x can be analytically evaluated to be the Student-t
distribution, which can be designed to peak at xi = 0 with appropriate
choice of a and b. This enables the desired solution x to be sparse. The
RVM approach can be visualized using a graphical model similar to the one
in "Sparse recovery via belief propagation". Using the observed
measurements y, the posterior density on each xi is estimated by an
iterative algorithm (e.g., Markov Chain Monte Carlo (MCMC) methods).
For a detailed analysis of the RVM with a measurement noise prior, refer
to [link], [link].

Alternatively, we can eliminate the need to set the hyperparameters a and b
as follows. Assuming Gaussian measurement noise with mean 0 and
variance σ2, we can directly find the marginal log likelihood for α and
maximize it by the EM algorithm (or directly differentiate) to find estimates
for α.
Equation:

(α) =log p y α,σ2 =log p y x,σ2 p (y|α)dx.

Bayesian compressive sensing

Unfortunately, evaluation of the log-likelihood in the original RVM setup
involves taking the inverse of an N × N  matrix, rendering the algorithm's
complexity to be O N 3 . A fast alternative algorithm for the RVM is
available which monotonically maximizes the marginal likelihoods of the
priors by a gradient ascent, resulting in an algorithm with complexity 
O NM 2 . Here, basis functions are sequentially added and deleted, thus
building the model up constructively, and the true sparsity of the signal x is
exploited to minimize model complexity. This is known as Fast Marginal
Likelihood Maximization, and is employed by the Bayesian Compressive



Sensing (BCS) algorithm [link] to efficiently evaluate the posterior
densities of xi.

A key advantage of the BCS algorithm is that it enables evaluation of “error
bars” on each estimated coefficient of x; these give us an idea of the
(in)accuracies of these estimates. These error bars could be used to
adaptively select the linear projections (i.e., the rows of the matrix Φ) to
reduce uncertainty in the signal. This provides an intriguing connection
between CS and machine learning techniques such as experimental design
and active learning [link], [link].



Linear regression and model selection
This module provides a brief overview of the relationship between model
selection, sparse linear regression, and the techniques developed in
compressive sensing.

Many of the sparse recovery algorithms we have described so far in this
course were originally developed to address the problem of sparse linear
regression and model selection in statistics. In this setting we are given
some data consisting of a set of input variables and response variables. We
will suppose that there are a total of N  input variables, and we observe a
total of M  input and response pairs. We can represent the set of input
variable observations as an M × N  matrix Φ, and the set of response
variable observations as an M × 1 vector y.

In linear regression, it is assumed that y can be approximated as a linear
function of the input variables, i.e., there exists an x such that y ≈ Φx.
However, when the number of input variables is large compared to the
number of observations, i.e., M ≪ N , this becomes extremely challenging
because we wish to estimate N  parameters from far fewer than N
observations. In general this would be impossible to overcome, but in
practice it is common that only a few input variables are actually necessary
to predict the response variable. In this case the x that we wish to estimate
is sparse, and we can apply all of the techniques that we have learned so far
for sparse recovery to estimate x. In this setting, not only does sparsity aid
us in our goal of obtaining a regression, but it also performs model selection
by identifying the most relevant variables in predicting the response.
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Sparse error correction
This module illustrates the application of the ideas of compressive sensing
to the design and decoding of error correcting codes for vectors of real
numbers subject to sparse corruptions.

In communications, error correction refers to mechanisms that can detect
and correct errors in the data that appear duet to distortion in the
transmission channel. Standard approaches for error correction rely on
repetition schemes, redundancy checks, or nearest neighbor code search.
We consider the particular case in which a signal x with M  entries is coded
by taking length-N  linearly independent codewords {φ1, .... φM }, with 
N > M  and summing them using the entries of x as coefficients. The
received message is a length-N  code y = ∑M

m=1 φixi = Φf, where Φ is a
matrix that has the different codewords for columns. We assume that the
transmission channel corrupts the entries of y in an additive way, so that the
received data is y = Φx + e, where e is an error vector.

The techniques developed for sparse recovery in the context of compressive
sensing (CS) provide a number of methods to estimate the error vector e —
therefore making it possible to correct it and obtain the signal x — when e
is sufficiently sparse [link]. To estimate the error, we build a matrix Θ that
is a basis for the orthogonal subspace to the span of the matrix Φ, i.e., an 
(N − M) × N  matrix Θ that holds ΘΦ = 0. When such a matrix is
obtained, we can modify the measurements by multiplying them with the
matrix to obtain ỹ = Θy = ΘΦx + Θe = Θe. If the matrix Θ is well-
suited for CS (i.e., it satisfies a condition such as the restricted isometry
property) and e is sufficiently sparse, then the error vector e can be
estimated accurately using CS. Once the estimate ê is obtained, the error-
free measurements can be estimated as ŷ = y − ê, and the signal can be
recovered as x̂ = Φ†ŷ = Φ†y − Φ†ê. As an example, when the codewords 
φm have random independent and identically distributed sub-Gaussian
entries, then a K-sparse error can be corrected if M < N − CK log N/K

for a fixed constant C (see "Matrices that satisfy the RIP").



Group testing and data stream algorithms
This module provides an overview of the relationship between compressive
sensing and problems in theoretical computer science including
combinatorial group testing and computation on data streams.

Another scenario where compressive sensing and sparse recovery
algorithms can be potentially useful is the context of group testing and the
related problem of computation on data streams.

Group testing

Among the historically oldest of all sparse recovery algorithms were
developed in the context of combinatorial group testing [link], [link], [link].
In this problem we suppose that there are N  total items and K anomalous
elements that we wish to find. For example, we might wish to identify
defective products in an industrial setting, or identify a subset of diseased
tissue samples in a medical context. In both of these cases the vector x
indicates which elements are anomalous, i.e., xi ≠ 0 for the K anomalous
elements and xi = 0 otherwise. Our goal is to design a collection of tests
that allow us to identify the support (and possibly the values of the
nonzeros) of x while also minimizing the number of tests performed. In the
simplest practical setting these tests are represented by a binary matrix Φ
whose entries φij are equal to 1 if and only if the jth item is used in the ith

test. If the output of the test is linear with respect to the inputs, then the
problem of recovering the vector x is essentially the same as the standard
sparse recovery problem in compressive sensing.

Computation on data streams

Another application area in which ideas related to compressive sensing
have proven useful is computation on data streams [link], [link]. As an
example of a typical data streaming problem, suppose that xi represents the
number of packets passing through a network router with destination i.
Simply storing the vector x is typically infeasible since the total number of
possible destinations (represented by a 32-bit IP address) is N = 232. Thus,
instead of attempting to store x directly, one can store y = Φx where Φ is



an M × N  matrix with M ≪ N . In this context the vector y is often called
a sketch. Note that in this problem y is computed in a different manner than
in the compressive sensing context. Specifically, in the network traffic
example we do not ever observe xi directly, rather we observe increments to
xi (when a packet with destination i passes through the router). Thus we
construct y iteratively by adding the ith column to y each time we observe
an increment to xi, which we can do since y = Φx is linear. When the
network traffic is dominated by traffic to a small number of destinations,
the vector x is compressible, and thus the problem of recovering x from the
sketch Φx is again essentially the same as the sparse recovery problem in
compressive sensing.



Compressive medical imaging
This module describes the application of compressive sensing to problems
in medical imaging.

MR image reconstruction

Magnetic Resonance Imaging (MRI) is a medical imaging technique based
on the core principle that protons in water molecules in the human body
align themselves in a magnetic field. MRI machines repeatedly pulse
magnetic fields to cause water molecules in the human body to disorient
and then reorient themselves, which causes a release of detectable
radiofrequencies. We assume that the object to be imaged as a collection of
voxels. The MRI's magnetic pulses are sent incrementally along a gradient
leading to a different phase and frequency encoding for each column and
row of voxels respectively. Abstracting away from the technicalities of the
physical process, the magnetic field measured in MRI acquisition
corresponds to a Fourier coefficient of the imaged object; the object can
then be recovered by an inverse Fourier transform. , we can view the MRI
as measuring Fourier samples.

A major limitation of the MRI process is the linear relation between the
number of measured data samples and scan times. Long-duration MRI
scans are more susceptible to physiological motion artifacts, add discomfort
to the patient, and are expensive [link]. Therefore, minimizing scan time
without compromising image quality is of direct benefit to the medical
community.

The theory of compressive sensing (CS) can be applied to MR image
reconstruction by exploiting the transform-domain sparsity of MR
images [link], [link], [link], [link]. In standard MRI reconstruction,
undersampling in the Fourier domain results in aliasing artifacts when the
image is reconstructed. However, when a known transform renders the
object image sparse or compressible, the image can be reconstructed using
sparse recovery methods. While the discrete cosine and wavelet transforms
are commonly used in CS to reconstruct these images, the use of total
variation norm minimization also provides high-quality reconstruction.



Electroencephalography

Electroencephalography (EEG) and Magnetoencephalography (MEG) are
two popular noninvasive methods to characterize brain function by
measuring scalp electric potential distributions and magnetic fields due to
neuronal firing. EEG and MEG provide temporal resolution on the
millisecond timescale characteristic of neural population activity and can
also help to estimate the current sources inside the brain by solving an
inverse problem [link].

Models for neuromagnetic sources suggest that the underlying activity is
often limited in spatial extent. Based on this idea, algorithms like FOCUSS
(Focal Underdetermined System Solution) are used to identify highly
localized sources by assuming a sparse model to solve an underdetermined
problem [link].

FOCUSS is a recursive linear estimation procedure, based on a weighted
pseudo-inverse solution. The algorithm assigns a current (with nonlinear
current location parameters) to each element within a region so that the
unknown current values can be related linearly to the measurements. The
weights at each step are derived from the solution of the previous iterative
step. The algorithm converges to a source distribution in which the number
of parameters required to describe source currents does not exceed the
number of measurements. The initialization determines which of the
localized solutions the algorithm converges to.



Analog-to-information conversion
In this module we describe the random demodulator and how it can be used
in the application of the theory of compressive sensing to the problem of
acquiring a high-bandwidth continuous-time signal.

We now consider the application of compressive sensing (CS) to the
problem of designing a system that can acquire a continuous-time signal 
x(t). Specifically, we would like to build an analog-to-digital converter
(ADC) that avoids having to sample x(t) at its Nyquist rate when x(t) is
sparse. In this context, we will assume that x(t) has some kind of sparse
structure in the Fourier domain, meaning that it is still bandlimited but that
much of the spectrum is empty. We will discuss the different possible signal
models for mathematically capturing this structure in greater detail below.
For now, the challenge is that our measurement system must be built using
analog hardware. This imposes severe restrictions on the kinds of
operations we can perform.

Analog measurement model

To be more concrete, since we are dealing with a continuous-time signal 
x(t), we must also consider continuous-time test functions {φj (t)}M

j=1. We
then consider a finite window of time, say t ∈ [0,T ], and would like to
collect M  measurements of the form
Equation:

y [j] =
T

0
x (t)φj (t) dt.

Building an analog system to collect such measurements will require three
main components:

1. hardware for generating the test signals φj (t);
2. M  correlators that multiply the signal x(t) with each respective φj (t);
3. M  integrators with a zero-valued initial state.



We could then sample and quantize the output of each of the integrators to
collect the measurements y[j]. Of course, even in this somewhat idealized
setting, it should be clear that what we can build in hardware will constrain
our choice of φj (t) since we cannot reliably and accurately produce (and
reproduce) arbitrarily complex φj (t) in analog hardware. Moreover, the
architecture described above requires M  correlator/integrator pairs
operating in parallel, which will be potentially prohibitively expensive both
in dollar cost as well as costs such as size, weight, and power (SWAP).

As a result, there have been a number of efforts to design simpler
architectures, chiefly by carefully designing structured φj (t). The simplest
to describe and historically earliest idea is to choose φj (t) = δ (t − tj),
where {tj}

M
j=1 denotes a sequence of M  locations in time at which we

would like to sample the signal x(t). Typically, if the number of
measurements we are acquiring is lower than the Nyquist-rate, then these
locations cannot simply be uniformly spaced in the interval [0,T ], but must
be carefully chosen. Note that this approach simply requires a single
traditional ADC with the ability to sample on a non-uniform grid, avoiding
the requirement for M  parallel correlator/integrator pairs. Such non-
uniform sampling systems have been studied in other contexts outside of
the CS framework. For example, there exist specialized fast algorithms for
the recovery of extremely large Fourier-sparse signals. The algorithm uses
samples at a non-uniform sequence of locations that are highly structured,
but where the initial location is chosen using a (pseudo)random seed. This
literature provides guarantees similar to those available from standard
CS [link], [link]. Additionally, there exist frameworks for the sampling and
recovery of multi-band signals, whose Fourier transforms are mostly zero
except for a few frequency bands. These schemes again use non-uniform
sampling patterns based on coset sampling [link], [link], [link], [link],
[link], [link]. Unfortunately, these approaches are often highly sensitive to
jitter, or error in the timing of when the samples are taken.

We will consider a rather different approach, which we call the random
demodulator [link], [link], [link].[footnote] The architecture of the random
demodulator is depicted in [link]. The analog input x(t) is correlated with a
pseudorandom square pulse of ±1's, called the chipping sequence pc (t),



which alternates between values at a rate of NaHz, where NaHz is at least
as fast as the Nyquist rate of x(t). The mixed signal is integrated over a
time period 1/Ma and sampled by a traditional integrate-and-dump back-
end ADC at MaHz ≪ NaHz. In this case our measurements are given by
A correlator is also known as a “demodulator” due to its most common
application: demodulating radio signals.
Equation:

y [j] =
j/Ma

(j−1)/Ma

pc (t)x (t) dt.

In practice, data is processed in time blocks of period T , and we define 
N = NaT  as the number of elements in the chipping sequence, and 
M = MaT  as the number of measurements. We will discuss the
discretization of this model below, but the key observation is that the
correlator and chipping sequence operate at a fast rate, while the back-end
ADC operates at a low rate. In hardware it is easier to build a high-rate
modulator/chipping sequence combination than a high-rate ADC [link]. In
fact, many systems already use components of this front end for binary
phase shift keying demodulation, as well as for other conventional
communication schemes such as CDMA.

Random demodulator block diagram.



Discrete formulation

Although the random demodulator directly acquires compressive
measurements without first sampling x(t), it is equivalent to a system
which first samples x(t) at its Nyquist-rate to yield a discrete-time vector x,
and then applies a matrix Φ to obtain the measurements y = Φx. To see this
we let pc [n] denote the sequence of ±1 used to generate the signal pc (t),
i.e., pc (t) = pc [n] for t ∈ [(n − 1)/Na,n/Na]. As an example, consider
the first measurement, or the case of j = 1. In this case, t ∈ [0, 1/Ma], so
that pc (t) is determined by pc [n] for n = 1, 2, ...,Na/Ma. Thus, from
[link] we obtain
Equation:

But since Na is the Nyquist-rate of x(t), n/Na

(n−1)/Na
x (t) dt simply

calculates the average value of x(t) on the nth interval, yielding a sample
denoted x[n]. Thus, we obtain
Equation:

y [1] =

Na/Ma

n=1

pc [n]x [n].

In general, our measurement process is equivalent to multiplying the signal 
x with the random sequence of ±1's in pc [n] and then summing every
sequential block of Na/Ma coefficients.
We can represent this as a banded

y[1] =
1/Ma

0

pc (t)x (t) dt

=
Na/Ma

n=1

pc [n]
n/Na

(n−1)/Na

x (t) dt.



matrix Φ containing Na/Ma pseudorandom ±1s per row. For example,
with N = 12, M = 4, and T = 1, such a Φ is expressed as
Equation:

Φ = .

In general, Φ will have M  rows and each row will contain N/M  nonzeros.
Note that matrices satisfying this structure are extremely efficient to apply,
requiring only O(N) computations compared to O(MN) in the general
case. This is extremely useful during recovery.

A detailed analysis of the random demodulator in [link] studied the
properties of these matrices applied to a particular signal model.
Specifically, it is shown that if Ψ  represents the N × N  normalized discrete
Fourier transform (DFT) matrix, then the matrix ΦΨ  will satisfy the
restricted isometry property (RIP) with high probability, provided that
Equation:

M = O K log2 (N/K) ,

where the probability is taken with respect to the random choice of pc [n].
This means that if x(t) is a periodic (or finite-length) signal such that once
it is sampled it is sparse or compressible in the basis Ψ , then it should be
possible to recover x(t) from the measurements provided by the random
demodulator. Moreover, it is empirically demonstrated that combining ℓ1

minimization with the random demodulator can recover K-sparse (in Ψ)
signals with
Equation:

M ≥ CK log (N/K + 1)

−1 +1 +1

−1 +1 −1

+1 +1 −1

+1 −1 −1



measurements where C ≈ 1. 7 [link].

Note that the signal model considered in [link] is somewhat restrictive,
since even a pure tone will not yield a sparse DFT unless the frequency
happens to be equal to k/Na for some integer k. Perhaps a more realistic
signal model is the multi-band signal model of [link], [link], [link], [link],
[link], [link], where the signal is assumed to be bandlimited outside of K
bands each of bandwidth B, where KB is much less than the total possible
bandwidth. It remains unknown whether the random demodulator can be
exploited to recover such signals. Moreover, there also exist other CS-
inspired architectures that we have not explored in this [link], [link], [link],
and this remains an active area of research. We have simply provided an
overview of one of the more promising approaches in order to illustrate the
potential applicability of the ideas of this course to the problem of analog-
to-digital conversion.

https://cnx.org/content/col11133@latest


Single-pixel camera
This module describes the application of compressive sensing to the design
of a novel imaging architecture called the "single-pixel camera".

Architecture

Several hardware architectures have been proposed that apply the theory of
compressive sensing (CS) in an imaging setting [link], [link], [link]. We
will focus on the so-called single-pixel camera [link], [link], [link], [link],
[link]. The single-pixel camera is an optical computer that sequentially
measures the inner products y [j] = ⟨x, φj⟩ between an N-pixel sampled
version of the incident light-field from the scene under view (denoted by x)
and a set of N-pixel test functions {φj}

M
j=1. The architecture is illustrated

in [link], and an aerial view of the camera in the lab is shown in [link]. As
shown in these figures, the light-field is focused by a lens (Lens 1 in [link])
not onto a CCD or CMOS sampling array but rather onto a spatial light
modulator (SLM). An SLM modulates the intensity of a light beam
according to a control signal. A simple example of a transmissive SLM that
either passes or blocks parts of the beam is an overhead transparency.
Another example is a liquid crystal display (LCD) projector.

Single-pixel camera block diagram. Incident light-field
(corresponding to the desired image x) is reflected off a digital
micromirror device (DMD) array whose mirror orientations are
modulated according to the pseudorandom pattern φj supplied



The Texas Instruments (TI) digital micromirror device (DMD) is a
reflective SLM that selectively redirects parts of the light beam. The DMD
consists of an array of bacterium-sized, electrostatically actuated micro-
mirrors, where each mirror in the array is suspended above an individual
static random access memory (SRAM) cell. Each mirror rotates about a
hinge and can be positioned in one of two states (±10 degrees from
horizontal) according to which bit is loaded into the SRAM cell; thus light
falling on the DMD can be reflected in two directions depending on the
orientation of the mirrors.

Each element of the SLM corresponds to a particular element of φj (and its
corresponding pixel in x). For a given φj, we can orient the corresponding
element of the SLM either towards (corresponding to a 1 at that element of 
φj) or away from (corresponding to a 0 at that element of φj) a second lens
(Lens 2 in [link]). This second lens collects the reflected light and focuses it
onto a single photon detector (the single pixel) that integrates the product of
x and φj to compute the measurement y [j] = ⟨x, φj⟩ as its output voltage.
This voltage is then digitized by an A/D converter. Values of φj between 0
and 1 can be obtained by dithering the mirrors back and forth during the
photodiode integration time. By reshaping x into a column vector and the 
φj into row vectors, we can thus model this system as computing the
product y = Φx, where each row of Φ corresponds to a φj. To compute
randomized measurements, we set the mirror orientations φj randomly
using a pseudorandom number generator, measure y[j], and then repeat the
process M  times to obtain the measurement vector y.

by a random number generator. Each different mirror pattern
produces a voltage at the single photodiode that corresponds to

one measurement y[j].



The single-pixel design reduces the required size, complexity, and cost of
the photon detector array down to a single unit, which enables the use of
exotic detectors that would be impossible in a conventional digital camera.
Example detectors include a photomultiplier tube or an avalanche
photodiode for low-light (photon-limited) imaging, a sandwich of several
photodiodes sensitive to different light wavelengths for multimodal sensing,
a spectrometer for hyperspectral imaging, and so on.

In addition to sensing flexibility, the practical advantages of the single-pixel
design include the facts that the quantum efficiency of a photodiode is
higher than that of the pixel sensors in a typical CCD or CMOS array and
that the fill factor of a DMD can reach 90% whereas that of a CCD/CMOS
array is only about 50%. An important advantage to highlight is that each
CS measurement receives about N/2 times more photons than an average
pixel sensor, which significantly reduces image distortion from dark noise
and read-out noise.

Aerial view of the single-pixel camera in the lab.



The single-pixel design falls into the class of multiplex cameras. The
baseline standard for multiplexing is classical raster scanning, where the
test functions {φj} are a sequence of delta functions δ[n − j] that turn on
each mirror in turn. There are substantial advantages to operating in a CS
rather than raster scan mode, including fewer total measurements (M  for
CS rather than N  for raster scan) and significantly reduced dark noise.
See [link] for a more detailed discussion of these issues.

[link] (a) and (b) illustrates a target object (a black-and-white printout of an
“R”) x and reconstructed image x̂ taken by the single-pixel camera
prototype in [link] using N = 256 × 256 and M = N/50[link]. [link](c)
illustrates an N = 256 × 256 color single-pixel photograph of a printout of
the Mandrill test image taken under low-light conditions using RGB color
filters and a photomultiplier tube with M = N/10. In both cases, the
images were reconstructed using total variation minimization, which is
closely related to wavelet coefficient ℓ1 minimization [link].

Sample image reconstructions from single-pixel camera. (a) 
256 × 256 conventional image of a black-and-white “R”. (b) Image
reconstructed from M = 1300 single-pixel camera measurements (

50× sub-Nyquist). (c) 256 × 256 pixel color reconstruction of a
printout of the Mandrill test image imaged in a low-light setting using

a single photomultiplier tube sensor, RGB color filters, and M = 6500
random measurements.



Discrete formulation

Since the DMD array is programmable, we can employ arbitrary test
functions φj. However, even when we restrict the φj to be {0, 1}-valued,
storing these patterns for large values of N  is impractical. Furthermore, as
noted above, even pseudorandom Φ can be computationally problematic
during recovery. Thus, rather than purely random Φ, we can also consider Φ
that admit a fast transform-based implementation by taking random
submatrices of a Walsh, Hadamard, or noiselet transform [link], [link]. We
will describe the Walsh transform for the purpose of illustration.

We will suppose that N  is a power of 2 and let Wlog2N  denote the N × N

Walsh transform matrix. We begin by setting W0 = 1, and we now define 
Wj recursively as
Equation:

Wj =
1

√2
.

This construction produces an orthonormal matrix with entries of ±1/√N
that admits a fast implementation requiring O(N log N) computations to
apply. As an example, note that
Equation:

W1 =
1

√2

and
Equation:

Wj−1 Wj−1

Wj−1 −Wj−1

1 1

1 −1



W2 =
1

2
.

We can exploit these constructions as follows. Suppose that N = 2B and
generate WB. Let IΓ  denote a M × N  submatrix of the identity I obtained
by picking a random set of M  rows, so that IΓ WB is the submatrix of WB

consisting of the rows of WB indexed by Γ . Furthermore, let D denote a
random N × N  permutation matrix. We can generate Φ as
Equation:

Φ =
1

2
√NIΓ WB +

1

2
D.

Note that 1
2

√NIΓ WB + 1
2  merely rescales and shifts IΓ WB to have 

{0, 1}-valued entries, and recall that each row of Φ will be reshaped into a
2-D matrix of numbers that is then displayed on the DMD array.
Furthermore, D can be thought of as either permuting the pixels or
permuting the columns of WB. This step adds some additional randomness
since some of the rows of the Walsh matrix are highly correlated with
coarse scale wavelet basis functions — but permuting the pixels eliminates
this structure. Note that at this point we do not have any strict guarantees
that such Φ combined with a wavelet basis Ψ  will yield a product ΦΨ
satisfying the restricted isometry property, but this approach seems to work
well in practice.

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



Hyperspectral imaging
This module provides an overview of architectures and methods for
hyperspectral imaging using the ideas of compressive sensing.

Standard digital color images of a scene of interest consist of three
components – red, green and blue – which contain the intensity level for
each of the pixels in three different groups of wavelengths.
This concept has
been extended in the hyperspectral and multispectral imaging sensing
modalities, where the data to be acquired consists of a three-dimensional
datacube that has two spatial dimensions x and y and one spectral
dimension λ.

In simple terms, a datacube is a 3-D function f(x, y, λ) that can be
represented as a stacking of intensities of the scene at different wavelengths.
An example datacube is shown in [link].
Each of its entries is called a
voxel. We also define a pixel's spectral signature as the stacking of its
voxels in the spectral dimension f (x, y) = {f (x, y, λ)}λ.
The spectral
signature of a pixel can give a wealth of information about the
corresponding point in the scene that is not captured by its color. For
example, using spectral signatures, it is possible to identify the type of
material observed (for example, vegetation vs. ground vs. water), or its
chemical composition.

Datacubes are high-dimensional, since the standard number of pixels
present in a digitized image is multiplied by the number of spectral bands
desired. However, considerable structure is present in the observed data.
The spatial structure common in natural images is also observed in
hyperspectral imaging, while each pixel's spectral signature is usually
smooth.



Compressive sensing (CS) architectures for hyperspectral imaging perform
lower-dimensional projections that multiplex in the spatial domain, the
spectral domain, or both. Below, we detail three example architectures, as
well as three possible models to sparsify hyperspectral datacubes.

Compressive hyperspectral imaging architectures

Single pixel hyperspectral camera

The single pixel camera uses a single photodetector to record random
projections of the light emanated from the image, with the different random
projections being captured in sequence. A single pixel hyperspectral camera
requires a light modulating element that is reflective across the wavelengths
of interest, as well as a sensor that can record the desired spectral bands
separately [link]. A block diagram is shown in [link].

Example hyperspectral datacube, with
labeled dimensions.



The single sensor consists of a single spectrometer that spans the necessary
wavelength range, which replaces the photodiode. The spectrometer records
the intensity of the light reflected by the modulator in each wavelength. The
same digital micromirror device (DMD) provides reflectivity for
wavelengths from near infrared to near ultraviolet. Thus, by converting the
datacube into a vector sorted by spectral band, the matrix that operates on
the data to obtain the CS measurements is represented as
Equation:

Φ = .

This architecture performs multiplexing only in the spatial domain, i.e.
dimensions x and y, since there is no mixing of the different spectral bands
along the dimension λ.

Φx,y 0 ⋯ 0

0 Φx,y ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ Φx,y

Block diagram for a single pixel hyperspectral camera.
The photodiode is replaced by a spectrometer that

captures the modulated light intensity for all spectral
bands, for each of the CS measurements.



Dual disperser coded aperture snapshot spectral imager

The dual disperser coded aperture snapshot spectral imager (DD-CASSI),
shown in [link], is an architecture that combines separate multiplexing in
the spatial and spectral domain, which is then sensed by a wide-wavelength
sensor/pixel array, thus flattening the spectral dimension [link].

First, a dispersive element separates the different spectral bands, which still
overlap in the spatial domain. In simple terms, this element shears the
datacube, with each spectral slice being displaced from the previous by a
constant amount in the same spatial dimension. The resulting datacube is
then masked using the coded aperture, whose effect is to "punch holes" in
the sheared datacube by blocking certain pixels of light. Subsequently, a
second dispersive element acts on the masked, sheared datacube; however,
this element shears in the opposite direction, effectively inverting the
shearing of the first dispersive element. The resulting datacube is upright,
but features "sheared" holes of datacube voxels that have been masked out.

The resulting modified datacube is then received by a sensor array, which
flattens the spectral dimension by measuring the sum of all the wavelengths
received; the received light field resembles the target image, allowing for
optical adjustments such as focusing. In this way, the measurements consist
of full sampling in the spatial x and y dimensions, with an aggregation
effect in the spectral λ dimension.



Single disperser coded aperture snapshot spectral imager

The single disperser coded aperture snapshot spectral imager (SD-CASSI),
shown in [link], is a simplification of the DD-CASSI architecture in which
the first dispersive element is removed [link]. Thus, the light field received
at the sensors does not resemble the target image. Furthermore, since the
shearing is not reversed, the area occupied by the sheared datacube is larger
than that of the original datacube, requiring a slightly larger number of
pixels for the capture.

Dual disperser coded aperture snapshot spectral imager (DD-CASSI).
(a) Schematic of the DD-CASSI components. (b) Illustration of the

datacube processing performed by the components.

Single disperser coded aperture snapshot spectral imager (SD-CASSI).
(a) Schematic of the SD-CASSI components. (b) Illustration of the

datacube processing performed by the components.



Sparsity structures for hyperspectral datacubes

Dyadic Multiscale Partitioning

This sparsity structure assumes that the spectral signature for all pixels in a
neighborhood is close to constant; that is, that the datacube is piecewise
constant with smooth borders in the spatial dimensions. The complexity of
an image is then given by the number of spatial dyadic squares with
constant spectral signature necessary to accurately approximate the
datacube; see [link]. A reconstruction algorithm then searches for the signal
of lowest complexity (i.e., with the fewest dyadic squares) that generates
compressive measurements close to those observed [link].

Example dyadic square partition for
piecewise spatially constant datacube.



Spatial-only sparsity

This sparsity structure operates on each spectral band separately and
assumes the same type of sparsity structure for each band [link]. The
sparsity basis is drawn from those commonly used in images, such as
wavelets, curvelets, or the discrete cosine basis. Since each basis operates
only on a band, the resulting sparsity basis for the datacube can be
represented as a block-diagonal matrix:
Equation:

Ψ = .

Kronecker product sparsity

This sparsity structure employs separate sparsity bases for the spatial
dimensions and the spectral dimension, and builds a sparsity basis for the
datacube using the Kronecker product of these two [link]:
Equation:

Ψ = Ψλ ⊗ Ψx,y = .

In this manner, the datacube sparsity bases simultaneously enforces both
spatial and spectral structure, potentially achieving a sparsity level lower
than the sums of the spatial sparsities for the separate spectral slices,
depending on the level of structure between them and how well can this
structure be captured through sparsity.

Ψx,y 0 ⋯ 0

0 Ψx,y ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ Ψx,y

Ψλ [1, 1]Ψx,y Ψλ [1, 2]Ψx,y ⋯

Ψλ [2, 1]Ψx,y Ψλ [2, 2]Ψx,y ⋯

⋮ ⋮ ⋱



Summary

Compressive sensing will make the largest impact in applications with very
large, high dimensional datasets that exhibit considerable amounts of
structure. Hyperspectral imaging is a leading example of such applications;
the sensor architectures and data structure models surveyed in this module
show initial promising work in this new direction, enabling new ways of
simultaneously sensing and compressing such data. For standard sensing
architectures, the data structures surveyed also enable new transform
coding-based compression schemes.



Compressive processing of manifold-modeled data
This module outlines the connection between compressive sensing and
random projections of manifolds.

A powerful data model for many applications is the geometric notion
of a
low-dimensional manifold. Data that possesses merely K
intrinsic degrees
of freedom” can be assumed to lie on a
K-dimensional manifold in the
high-dimensional ambient space. Once
the manifold model is identified,
any point on it can be represented
using essentially K pieces of
information. For instance, suppose a stationary camera of resolution N
observes
a truck moving down along a straight line on a highway. Then, the
set of images captured by the camera forms a 1-dimensional manifold in the
image space RN. Another example is the set of images captured by a static
camera observing a cube that rotates in 3 dimensions. ([link]).

In many applications, it is beneficial to explicitly characterize the structure
(alternately, identify the parameters) of the manifold formed by a set of
observed signals. This is known as manifold learning and has been the
subject of considerable study over the last several years; well-known
manifold learning algorithms include Isomap [link], LLE [link], and
Hessian eigenmaps [link]. An informal example is as follows: if a 2-
dimensional manifold were to be imagined as the surface of a twisted sheet

(a) A rotating cube has 3 degrees of freedom, thus giving rise
to a 3-dimensional manifold in image space. (b) Illustration of

a manifold F  parametrized by a K−dimensional vector θ. 



of rubber, manifold learning can be described as the process of “unraveling”
the sheet and stretching it out on a 2D flat surface. [link] indicates the
performance of Isomap on a simple 2-dimensional dataset comprising of
images of a translating disk.

A linear, nonadaptive manifold dimensionality reduction technique has
recently been introduced that
employs the technique of random
projections [link]. Consider a
K-dimensional manifold  in the ambient
space RN and
its projection onto a random subspace of dimension 
M = CK log (N);
note that K < M << N . The result of [link] is that
the pairwise metric structure of sample points from  is
preserved with
high accuracy under projection from RN to
RM. This is analogous to the
result for compressive sensing of sparse signals (see "The restricted
isometry property"; however, the difference is that the number of
projections required to preserve the ensemble structure does not depend on
the sparsity of the individual images, but rather on the dimension of the
underlying manifold.

This result has far reaching implications; it suggests that a wide variety of
signal processing tasks can be performed directly on the random
projections
acquired by these devices, thus saving valuable
sensing, storage and

(a) Input data consisting of 1000 images of a disk shifted in K = 2
dimensions, parametrized by an articulation vector (θ1, θ2). (b) True 
θ1 and θ2 values
of the sampled data. (c) Isomap embedding learned

from original data in RN.



processing costs. In particular, this enables provably efficient manifold
learning in the projected domain [link]. [link] illustrates the performance of
Isomap on the translating disk dataset under varying numbers of random
projections.

The advantages of random projections extend even to cases where the
original data is available in the ambient space RN. For
example, consider a
wireless network of cameras observing a static scene. The set of images
captured by the cameras can be visualized as living on a low-dimensional
manifold in the image space.
To perform joint image analysis, the following
steps might be
executed:

1. Collate: Each camera node transmits its respective captured
image (of
size N) to a central processing unit.

2. Preprocess: The central processor estimates the
intrinsic dimensionK

of the underlying image manifold.
3. Learn: The central processor performs a nonlinear
embedding of the

data points – for instance, using
Isomap [link] – into a K-dimensional
Euclidean space,
using the estimate of K from the previous step.

In situations where N  is large and communication bandwidth is
limited, the
dominating costs will be in the first
transmission/collation step. To reduce
the
communication expense, one may perform nonlinear image
compression
(such as JPEG) at each node before transmitting to the central
processing. However, this requires a good deal of processing power at
each

Isomap embeddings learned from random projections of the 625
images of shifting squares. (a) 25 random projections; (b) 50 random

projections; (c) 25 random projections; (d) full data.



sensor, and the compression would have to be undone during the
learning
step, thus adding to overall computational costs.

As an alternative, every camera could encode its image by computing
(either
directly or indirectly) a small number of random projections to
communicate to the central processor [link]. These random projections are
obtained by linear operations on the data, and thus are cheaply
computed.
Clearly, in many situations it will be less expensive to
store, transmit, and
process such randomly projected versions of the
sensed images. The
method of random projections is thus a powerful tool for
ensuring the stable
embedding of low-dimensional manifolds into an
intermediate space of
reasonable size. It is now possible to think of settings
involving a huge
number of low-power devices that inexpensively capture, store, and
transmit a very small number of measurements of high-dimensional
data.



Inference using compressive measurements
This module provides an introduction to some simple algorithms for
compressive signal processing, i.e., processing compressive measurements
directly without first recovering the signal to solve an inference problem.

While the compressive sensing (CS) literature has focused almost
exclusively on problems
in signal reconstruction/approximation, this is
frequently not
necessary. For instance, in many signal processing
applications
(including computer vision, digital communications and radar
systems), signals are
acquired only for the purpose of making a detection or
classification decision. Tasks such as detection do not require a
reconstruction of the signal, but only require estimates of the
relevant
sufficient statistics for the problem at hand.

As a simple example, suppose a surveillance system (based on compressive
imaging) observes the motion of a person across a static background. The
relevant information to be extracted from the data acquired by this system
would be, for example, the identity of the person, or the location of this
person with respect to a predefined frame of coordinates. There are two
ways of doing this:

Reconstruct the full data using standard sparse recovery techniques
and apply standard computer vision/inference algorithms on the
reconstructed images.
Develop an inference test which operates directly on the compressive
measurements, without ever reconstructing the full images.

A crucial property that enables the design of compressive inference
algorithms is the information scalability property of compressive
measurements. This property arises from the following two observations:

For certain signal models, the action of a random linear function on the
set of signals of interest preserves enough information to perform
inference tasks on the observed measurements.
The number of random measurements required to perform the
inference task usually depends on the nature of the inference task.
Informally, we observe that more sophisticated tasks require more
measurements.



We examine three possible inference problems for which algorithms that
directly operate on the compressive measurements can be developed:
detection (determining the presence or absence of an information-bearing
signal), classification (assigning the observed signal to one of two (or more)
signal classes), and parameter estimation (calculating a function of the
observed signal).

Detection

In detection one simply wishes to
answer the question: is a (known) signal
present in the observations?
To solve this problem, it suffices to estimate a
relevant sufficient statistic. Based on a concentration of measure inequality,
it is possible to show that such sufficient statistics for a detection problem
can be accurately estimated from random projections, where the quality of
this estimate depends on
the signal to noise ratio (SNR) [link]. We make no
assumptions on the signal of interest s, and
hence we can build systems
capable of detecting s even when it is
not known in advance. Thus, we can
use random projections for
dimensionality-reduction in the detection setting
without knowing
the relevant structure.

In the case where the class of signals of interest corresponds to a low
dimensional subspace, a truncated, simplified sparse approximation can be
applied as a detection algorithm; this has been dubbed as IDEA [link]. In
simple terms, the algorithm will mark a detection when a large enough
amount of energy from the measurements lies in the projected subspace.
Since this problem does not require accurate estimation of the signal values,
but rather whether it belongs in the subspace of interest or not, the number
of measurements necessary is much smaller than that required for
reconstruction, as shown in [link].



Classification

Similarly, random projections have long been used for a variety of
classification and clustering problems. The Johnson-Lindenstrauss Lemma
is often exploited in this setting to compute approximate nearest neighbors,
which is naturally related to
classification. The key result that random
projections result in an isometric embedding allows us to generalize
this
work to several new classification algorithms and settings [link].

Classification can also be performed when more elaborate models are used
for the different classes. Suppose the signal/image class of interest can be
modeled as a low-dimensional manifold in the ambient space. In such case
it can be shown that, even under random projections, certain geometric
properties of the signal class are preserved up to a small distortion; for
example, interpoint Euclidean (ℓ2) distances are preserved [link]. This
enables the design of classification algorithms in the projected domain. One

Performance for IDEA. (Top) Sample wideband chirp
signal and same
chirp embedded in strong narrowband interference.
(Bottom)

Probability of error to reconstruct and detect chirp
signals embedded
in strong sinusoidal interference (SIR = −6
dB) using greedy

algorithms. In this case, detection requires
3× fewer measurements
and 4× fewer computations than
reconstruction for an equivalent

probability of success. Taken from [link].



such algorithm is known as the smashed filter [link]. As an example, under
equal distribution among classes and a gaussian noise setting, the smashed
filter is equivalent to building a nearest-neighbor (NN) classifier in the
measurement domain. Further, it has been shown that for a K−dimensional
manifold, M = O(K log N) measurements are sufficient to perform
reliable compressive classification. Thus, the number of measurements
scales as the dimension of the signal class, as opposed to the sparsity of the
individual signal.
Some example results are shown in [link](a).

Estimation

Results for smashed filter image
classification and parameter
estimation experiments. (a) Classification rates and
(b) average

estimation error for varying number of measurements M 
and noise
levels σ for a set of images of several objects under varying shifts. As 
M  increases, the distances between the manifolds increase as well,

thus increasing the noise tolerance and enabling more accurate
estimation and classification.
Thus, the classification and estimation
performances improve as
σ decreases and M  increases in all cases.

Taken from [link].



Consider a signal x ∈ N, and suppose that we wish to estimate some
function f(x) but only
observe the measurements y = Φx, where Φ is
again an
M × N  matrix. The data streaming community has previously
analyzed this problem for
many common functions, such as linear
functions, ℓp norms, and
histograms. These estimates are often based on so-
called sketches, which can be thought of as random projections.

As an example, in the case where f is a linear function, one
can show that
the estimation error (relative to the norms of x and
f) can be bounded by a
constant determined by M . This result holds for a wide class of random
matrices, and can be viewed as a straightforward consequence of the same
concentration of measure inequality that has proven useful for CS
and in
proving the JL Lemma [link].

Parameter estimation can also be performed when the signal class is
modeled as a low-dimensional manifold. Suppose an observed signal x can
be parameterized by a K−dimensional parameter vector θ, where K ≪ N .
Then, it can be shown that with 0(K log N) measurements, the parameter
vector can be obtained via multiscale manifold navigation in the
compressed domain [link]. Some example results are shown in [link](b).



Compressive sensor networks
This module provides an overview of applications of compressive sensing
in the context of distributed sensor networks.

Sparse and compressible signals are present in many sensor network
applications, such as environmental monitoring, signal field recording and
vehicle surveillance. Compressive sensing (CS) has many properties that
make it attractive in this settings, such as its low complexity sensing and
compression, its universality and its graceful degradation. CS is robust to
noise, and allows querying more nodes to obey further detail on signals as
they become interesting.
Packet drops also do not harm the network nearly
as much as many other protocols, only providing a marginal loss for each
measurement not obtained by the receiver. As the network becomes more
congested, data can be scaled back smoothly.

Thus CS can enable the design of generic compressive sensors that perform
random or incoherent projections.

Several methods for using CS in sensor networks have been proposed.
Decentralized methods pass data throughout the network, from neighbor to
neighbor, and allow the decoder to probe any subset of nodes. In contrast,
centralized methods require all information to be transmitted to a
centralized data center, but reduce either the amount of information that
must be transmitted or the power required to do so. We briefly summarize
each class below.

Decentralized algorithms

Decentralized algorithms enable the calculation of compressive
measurements at each sensor in the network, thus being useful for
applications where monitoring agents traverse the network during
operation.

Randomized gossiping



In randomized gossiping [link], each sensor communicates M  random
projection of its data sample to a random set of nodes, in each stage
aggregating and forwarding the observations received to a new set of
random nodes. In essence, a spatial dot product is being performed as each
node collects and aggregates information, compiling a sum of the weighted
samples to obtain M  CS measurements which becomes more accurate as
more rounds of random gossiping occur. To recover the data, a basis that
provides data sparsity (or at least compressibility) is required, as well as the
random projections used. However, this information does not need to be
known while the data is being passed.

The method can also be applied when each sensor observes a compressible
signal. In this case, each sensor computes multiple random projections of
the data and transmits them using randomized gossiping to the rest of the
network.
A potential drawback of this technique is the amount of storage
required per sensor, as it could be considerable for large networks .
In this
case, each sensor can store the data from only a subset of the sensors, where
each group of sensors of a certain size will be known to contain CS
measurements for all the data in the network. To maintain a constant error
as the network size grows, the number of transmissions becomes Θ(kMn

2)
, where k represents the number of groups in which the data is partitioned, 
M  is the number of values desired from each sensor and n are the number
of nodes in the network. The results can be improved by using geographic
gossiping algorithms [link].

Distributed sparse random projections

A second method modifies the randomized gossiping approach by limiting
the number of communications each node must perform, in order to reduce
overall power consumption [link]. Each data node takes M  projections of
its data, passing along information to a small set of L neighbors, and
summing the observations; the resulting CS measurements are sparse, since 
N − L of each row's entries will be zero. Nonetheless, these projections
can still be used as CS measurements with quality similar to that of full
random projections. Since the CS measurement matrix formed by the data
nodes is sparse, a relatively small amount of communication is performed



by each encoding node and the overall power required for transmission is
reduced.

Centralized algorithms

Decentralized algorithms are used when the sensed data must be routed to a
single location; this architecture is common in sensor networks were low
power, simple nodes perform sensing and a powerful central location
performs data processing.

Compressive wireless sensing

Compressive wireless sensing (CWS) emphasizes the use of synchronous
communication to reduce the transmission power of each sensor [link]. In
CWS, each sensor calculates a noisy projection of their data sample. Each
sensor then transmits the calculated value by analog modulation and
transmission of a communication waveform. The projections are aggregated
at the central location by the receiving antenna, with further noise being
added. In this way, the fusion center receives the CS measurements, from
which it can perform reconstruction using knowledge of the random
projections.

A drawback of this method is the required accurate synchronization.
Although CWS is constraining the power of each node, it is also relying on
constructive interference to increase the power received by the data center.
The nodes themselves must be accurately synchronized to know when to
transmit their data. In addition, CWS assumes that the nodes are all at
approximately equal distances from the fusion center, an assumption that is
acceptable only when the receiver is far away from the sensor network.
Mobile nodes could also increase the complexity of the transmission
protocols. Interference or path issues also would have a large effect on
CWS, limiting its applicability.

If these limitations are addressed for a suitable application, CWS does offer
great power benefits when very little is known about the data beyond



sparsity in a fixed basis. Distortion will be proportional to M −2α/(2α+1),
where α is some positive constant based on the network structure. With
much more a priori information about the sensed data, other methods will
achieve distortions proportional to M −2α.

Distributed compressive sensing

Distributed Compressive Sensing (DCS) provides several models for
combining neighboring sparse signals, relying on the fact that such sparse
signals may be similar to each other, a concept that is termed joint
sparsity [link]. In an example model, each signal has a common component
and a local innovation, with the commonality only needing to be encoded
once while each innovation can be encoded at a lower measurement rate.
Three different joint sparsity models (JSMs) have been developed:

1. Both common signal and innovations are sparse;
2. Sparse innovations with shared sparsity structure;
3. Sparse innovations and dense common signal.

Although JSM 1 would seem preferable due to the relatively limited amount
of data, only JSM 2 is computationally feasible for large sensor networks; it
has been used in many applications [link]. JSMs 1 and 3 can be solved
using a linear program, which has cubic complexity on the number of
sensors in the network.

DCS, however, does not address the communication or networking
necessary to transmit the measurements to a central location; it relies on
standard communication and networking techniques for measurement
transmission, which can be tailored to the specific network topology.



Genomic sensing
This module describes the application of compressive sensing to the design
of new kinds of DNA microarray probes.

Biosensing of pathogens is a research area of high consequence. An
accurate and rapid biosensing paradigm has the potential to impact several
fields, including healthcare, defense and environmental monitoring. In this
module we address the concept of biosensing based on compressive sensing
(CS) via the Compressive Sensing Microarray (CSM), a DNA microarray
adapted to take CS-style measurements.

DNA microarrays are a frequently applied solution for microbe sensing;
they have a significant edge over competitors due to their ability to sense
many organisms in parallel [link], [link]. A DNA microarray consists of
genetic sensors or spots, each containing DNA sequences termed probes.
From the perspective of a microarray, each DNA sequence can be viewed as
a sequence of four DNA bases {A, T , G, C} that tend to bind with one
another in complementary pairs: A with T  and G with C. Therefore, a
DNA subsequence in a target organism's genetic sample will tend to bind or
“hybridize” with its complementary subsequence on a microarray to form a
stable structure. The target DNA sample to be identified is fluorescently
tagged before it is flushed over the microarray. The extraneous DNA is
washed away so that only the bound DNA is left on the array. The array is
then scanned using laser light of a wavelength designed to trigger
fluorescence in the spots where binding has occurred. A specific pattern of
array spots will fluoresce, which is then used to infer the genetic makeup in
the test sample.

Cartoon of traditional DNA microarray showing strong



There are three issues with the traditional microarray design. Each spot
consists of probes that can uniquely identify only one target of interest
(each spot contains multiple copies of a probe for robustness.) The first
concern with this design is that very often the targets in a test sample have
similar base sequences, causing them to hybridize with the wrong probe
(see [link]). These cross-hybridization events lead to errors in the array
readout. Current microarray design methods do not address cross-matches
between similar DNA sequences.

The second concern in choosing unique identifier based DNA probes is its
restriction on the number of organisms that can be identified. In typical
biosensing applications multiple organisms must be identified; therefore a
large number of DNA targets requires a microarray with a large number of
spots. In fact, there are over 1000 known harmful microbes, many with
more than 100 strains.
The implementation cost and processing speed of
microarray data is directly related to its number of spots, representing a
significant problem for commercial deployment of microarray-based
biosensors.
As a consequence readout systems for
traditional DNA arrays
cannot be miniaturized or implemented using electronic components and
require complicated fluorescent tagging.

The third concern is the inefficient utilization of the large number of array
spots in traditional microarrays. Although the number of potential agents in
a sample is very large, not all agents are expected to be present in a
significant concentration at a given time and location, or in an air/water/soil
sample to be tested. Therefore, in a traditionally designed microarray only a
small fraction of spots will be active at a given time, corresponding to the
few targets present.

To combat these problems, a Compressive Sensing DNA Microarray (CSM)
uses “combinatorial testing sensors” in order to reduce the number of sensor
spots [link], [link], [link]. Each spot in the CSM identifies a group of target

and weak hybridization of the unique pathogen identifier
at different microarray spots



organisms, and several spots together generate a unique pattern identifier
for a single target. (See also "Group testing and data stream algorithms".)
Designing the probes that perform this combinatorial sensing is the essence
of the microarray design process, and what we aim to describe in this
module.

To obtain a CS-type measurement scheme, we can choose each probe in a
CSM to be a group identifier such that the readout of each probe is a
probabilistic combination of all the targets in its group. The probabilities are
representative of each probe's hybridization affinity (or stickiness) to those
targets in its group; the targets that are not in its group have low affinity to
the probe. The readout signal at each spot of the microarray is a linear
combination of hybridization affinities between its probe sequence and each
of the target agents.

[link] illustrates the sensing process. To formalize, we assume there are M
spots on the CSM and N  targets; we have far fewer spots than target agents.
For 1 ≤ i ≤ M  and 1 ≤ j ≤ N , the
probe at spot i hybridizes with target j
with affinity
φi,j. The target j occurs in the tested DNA sample with
concentration xj, so that the total hybridization of spot i is 
yi = ∑N

j=1 φi,jxj = φix, where φj and x are a row and column vector,
respectively. The resulting measured microarray signal intensity
vector 
y = {yi}i = 1, ..., M  fits the CS measurement model y = Φx.

Structure of the CSM sensing matrix Φ with 
M  spots identifying N  targets



While group testing has previously been proposed for microarrays [link],
the sparsity in the target signal is key in applying CS. The chief advantage
of a CS-based approach over regular group testing is in its information
scalability. We are able to not just detect, but estimate the target signal with
a reduced number of measurements similar to that of group testing [link].
This is important since there are always minute quantities of certain
pathogens in the environment, but it is only their large concentrations that
may be harmful to us. Furthermore, we are able to use CS recovery methods
such as Belief Propagation that decode x while accounting for experimental
noise and measurement nonlinearities due to excessive target
molecules [link].



Sub-Gaussian random variables
In this module we introduce the sub-Gaussian and strictly sub-Gaussian
distributions. We provide some simple examples and illustrate some of the
key properties of sub-Gaussian random variables.

A number of distributions, notably Gaussian and Bernoulli, are known to
satisfy certain concentration of measure inequalities. We will analyze this
phenomenon from a more general perspective by considering the class of
sub-Gaussian distributions [link].

A random variable X is called sub-Gaussian if there exists a constant 
c > 0 such that
Equation:

E(exp (Xt)) ≤exp (c
2
t

2/2)

holds for all t ∈ R. We use the notation X ∼ Sub(c
2) to denote that 

X satisfies [link].

The function E(exp (Xt)) is the moment-generating function of X, while
the upper bound in [link] is the moment-generating function of a Gaussian
random variable. Thus, a sub-Gaussian distribution is one whose moment-
generating function is bounded by that of a Gaussian. There are a
tremendous number of sub-Gaussian distributions, but there are two
particularly important examples:

Example:
If X ∼ N (0, σ

2), i.e., X is a zero-mean Gaussian random variable with
variance σ2, then X ∼ Sub(σ

2). Indeed, as mentioned above, the
moment-generating function of a Gaussian is given by 
E(exp (Xt)) =exp (σ

2
t

2/2), and thus [link] is trivially satisfied.



Example:
If X is a zero-mean, bounded random variable, i.e., one for which there
exists a constant B such that |X| ≤ B with probability 1, then 
X ∼ Sub(B

2).

A common way to characterize sub-Gaussian random variables is through
analyzing their moments. We consider only the mean and variance in the
following elementary lemma, proven in [link].
(Buldygin-Kozachenko [link])

If X ∼ Sub(c
2) then,

Equation:

E(X) = 0

and
Equation:

E (X
2) ≤ c

2.

[link] shows that if X ∼ Sub(c
2) then E (X

2) ≤ c
2. In some settings it

will be useful to consider a more restrictive class of random variables for
which this inequality becomes an equality.

A random variable X is called strictly sub-Gaussian if X ∼ Sub(σ
2)

where σ2 = E (X 2), i.e., the inequality
Equation:

E(exp (Xt)) ≤exp (σ
2
t

2/2)

holds for all t ∈ R. To denote that X is strictly sub-Gaussian with
variance σ2, we will use the notation X ∼ SSub(σ2).



Example:
If X ∼ N (0, σ

2), then X ∼ SSub(σ
2).

Example:
If X ∼ U(−1, 1), i.e., X is uniformly distributed on the interval [−1, 1],
then X ∼ SSub(1/3).

Example:
Now consider the random variable with distribution such that
Equation:

P (X = 1) = P (X = −1) =
1 − s

2
, P (X = 0) = s, s ∈ [0, 1).

For any s ∈ [0, 2/3], X ∼ SSub(1 − s). For s ∈ (2/3, 1), X is not
strictly sub-Gaussian.

We now provide an equivalent characterization for sub-Gaussian and
strictly sub-Gaussian random variables, proven in [link], that illustrates
their concentration of measure behavior.
(Buldygin-Kozachenko [link])

A random variable X ∼ Sub(c2) if and only if there exists a t0 ≥ 0 and a
constant a ≥ 0 such that
Equation:

P (|X| ≥ t) ≤ 2 exp −
t2

2a2



for all t ≥ t0. Moreover, if X ∼ SSub(σ
2), then [link] holds for all t > 0

with a = σ.

Finally, sub-Gaussian distributions also satisfy one of the fundamental
properties of a Gaussian distribution: the sum of two sub-Gaussian random
variables is itself a sub-Gaussian random variable. This result is established
in more generality in the following lemma.

Suppose that X = [X1, X2, ..., XN ], where each Xi is independent and
identically distributed (i.i.d.) with Xi ∼ Sub (c

2). Then for any α ∈ R
N , 

⟨X, α⟩ ∼ Sub c
2∥ α ∥2

2 . Similarly, if each Xi ∼ SSub (σ
2), then for

any α ∈ RN , ⟨X, α⟩ ∼ SSub σ2∥ α ∥2
2 .

Since the Xi are i.i.d., the joint distribution factors and simplifies as:
Equation:

If the Xi are strictly sub-Gaussian, then the result follows by setting 
c

2 = σ
2 and observing that E ⟨X, α⟩2 = σ

2∥ α ∥2
2.

E exp t

N

i=1

αiXi = E

N

∏
i=1

exp (tαiXi)

=
N

∏
i=1

E(exp (tαiXi))

≤
N

∏
i=1

exp c
2(αit)

2/2

=exp
N

i=1

α
2
i c

2
t

2/2 .



Concentration of measure for sub-Gaussian random variables
This module establishes concentration bounds for sub-Gaussian vectors and
matrices.

Sub-Gaussian distributions have a close relationship to the concentration of
measure phenomenon [link]. To illustrate this, we note that we can combine
Lemma 2 and Theorem 1 from "Sub-Gaussian random variables" to obtain
deviation bounds for weighted sums of sub-Gaussian random variables. For our
purposes, however, it will be more enlightening to study the norm of a vector of
sub-Gaussian random variables. In particular, if X is a vector where each Xi is
i.i.d. with Xi ∼ Sub (c), then we would like to know how ∥ X ∥2 deviates from
its mean.

In order to establish the result, we will make use of Markov's inequality for
nonnegative random variables.
(Markov's Inequality)

For any nonnegative random variable X and t > 0,
Equation:

P (X ≥ t) ≤
E(X)

t
.

Let f(x) denote the probability density function for X.
Equation:

E (X) = ∫
∞

0
xf (x) dx ≥ ∫

∞

t

xf (x) dx ≥ ∫
∞

t

tf (x) dx = tP (X ≥ t).

In addition, we will require the following bound on the exponential moment of a
sub-Gaussian random variable.

Suppose X ∼ Sub(c2). Then
Equation:

E(exp (λX 2/2c2)) ≤
1

√1 − λ
,



for any λ ∈ [0, 1).

First, observe that if λ = 0, then the lemma holds trivially. Thus, suppose that 
λ ∈ (0, 1). Let f(x) denote the probability density function for X. Since X is
sub-Gaussian, we have by definition that
Equation:

∫
∞

−∞
exp (tx)f (x) dx ≤exp (c2t2/2)

for any t ∈ R. If we multiply by exp (−c2t2/2λ), then we obtain
Equation:

∫
∞

−∞
exp (tx − c2t2/2λ)f (x) dx ≤exp (c2t2 (λ − 1)/2λ).

Now, integrating both sides with respect to t, we obtain
Equation:

∫
∞

−∞
(∫

∞

−∞
exp (tx − c2t2/2λ) dt)f (x) dx ≤ ∫

∞

−∞
exp (c2t2 (λ − 1)/2λ) dt,

which reduces to
Equation:

1

c
√2πλ∫

∞

−∞
exp (λx2/2c2)f (x) dx ≤

1

c
√ 2πλ

1 − λ
.

This simplifies to prove the lemma.

We now state our main theorem, which generalizes the results of [link] and uses
substantially the same proof technique.

Suppose that X = [X1,X2, ...,XM ], where each Xi is i.i.d. with Xi ∼ Sub (c2)
and E (X 2

i ) = σ2. Then
Equation:



E(∥ X ∥2
2) = Mσ2.

Moreover, for any α ∈ (0, 1) and for any β ∈ [c2/σ2,βmax], there exists a
constant κ* ≥ 4 depending only on βmax and the ratio σ2/c2 such that
Equation:

P(∥ X ∥2
2 ≤ αMσ2) ≤exp (−M(1 − α)2/κ*)

and
Equation:

P(∥ X ∥2
2 ≥ βMσ2) ≤exp (−M(β − 1)2/κ*).

Since the Xi are independent, we obtain
Equation:

E(∥ X ∥2
2) =

M

∑
i=1

E(X 2
i ) =

M

∑
i=1

σ2 = Mσ2

and hence [link] holds. We now turn to [link] and [link]. Let us first consider
[link]. We begin by applying Markov's inequality:
Equation:

Since Xi ∼ Sub (c2), we have from [link] that
Equation:

P(∥ X ∥2
2 ≥ βMσ2) = P(exp (λ ∥ X ∥2

2) ≥exp (λβMσ2))

≤
E(exp (λ ∥ X ∥2

2))

exp (λβMσ2)

=
∏M

i=1E(exp (λX 2
i ))

exp (λβMσ2)
.



E(exp (λX 2
i )) = E(exp (2c2λX 2

i /2c2)) ≤
1

√1 − 2c2λ
.

Thus,
Equation:

M

∏
i=1

E(exp (λX 2
i )) ≤ (

1

1 − 2c2λ
)

M/2

and hence
Equation:

P(∥ X ∥2
2 ≥ βMσ2) ≤ (

exp (−2λβσ2)

1 − 2c2λ
)

M/2

.

By setting the derivative to zero and solving for λ, one can show that the optimal 
λ is
Equation:

λ =
βσ2 − c2

2c2σ2 (1 + β)
.

Plugging this in we obtain
Equation:

P(∥ X ∥2
2 ≥ βMσ2) ≤ (β

σ2

c2
exp (1 − β

σ2

c2
))

M/2

.

Similarly,
Equation:

P(∥ X ∥2
2 ≤ αMσ2) ≤ (α

σ2

c2
exp (1 − α

σ2

c2
))

M/2

.



In order to combine and simplify these inequalities, note that if we define
Equation:

κ* =max (4, 2
(βmaxσ

2/c − 1)
2

(βmaxσ2/c − 1)− log (βmaxσ2/c)
)

then we have that for any γ ∈ [0,βmaxσ
2/c] we have the bound

Equation:

log (γ) ≤ (γ − 1) −
2(γ − 1)2

κ*
,

and hence
Equation:

γ ≤exp ((γ − 1) −
2(γ − 1)2

κ*
).

By setting γ = ασ2/c2, [link] reduces to yield [link]. Similarly, setting 
γ = βσ2/c2 establishes [link].

This result tells us that given a vector with entries drawn according to a sub-
Gaussian distribution, we can expect the norm of the vector to concentrate around
its expected value of Mσ2 with exponentially high probability as M  grows. Note,
however, that the range of allowable choices for β in [link] is limited to 
β ≥ c2/σ2 ≥ 1. Thus, for a general sub-Gaussian distribution, we may be unable
to achieve an arbitrarily tight concentration. However, recall that for strictly sub-
Gaussian distributions we have that c2 = σ2, in which there is no such restriction.
Moreover, for strictly sub-Gaussian distributions we also have the following
useful corollary.[footnote]
[link] exploits the strictness in the strictly sub-Gaussian distribution twice — first
to ensure that β ∈ (1, 2] is an admissible range for β and then to simplify the
computation of κ*. One could easily establish a different version of this corollary
for non-strictly sub-Gaussian vectors but for which we consider a more restricted
range of ϵ provided that c2/σ2 < 2. However, since most of the distributions of
interest in this thesis are indeed strictly sub-Gaussian, we do not pursue this route.



Note also that if one is interested in very small ϵ, then there is considerable room
for improvement in the constant C *.

Suppose that X = [X1,X2, ...,XM ], where each Xi is i.i.d. with 
Xi ∼ SSub (σ2). Then
Equation:

E(∥ X ∥2
2) = Mσ2

and for any ϵ > 0,
Equation:

P( ∥ X ∥2
2 − Mσ2 ≥ ϵMσ2) ≤ 2 exp (−

Mϵ2

κ*
)

with κ* = 2/ (1− log (2)) ≈ 6. 52.

Since each Xi ∼ SSub (σ2), we have that Xi ∼ Sub (σ2) and E (X 2
i ) = σ2, in

which case we may apply [link] with α = 1 − ϵ and β = 1 + ϵ. This allows us to
simplify and combine the bounds in [link] and [link] to obtain [link]. The value of
κ* follows from the observation that 1 + ϵ ≤ 2 so that we can set βmax = 2.

Finally, from [link] we also have the following additional useful corollary. This
result generalizes the main results of [link] to the broader family of general
strictly sub-Gaussian distributions via a much simpler proof.

Suppose that Φ is an M × N  matrix whose entries φij are i.i.d. with 
φij ∼ SSub (1/M). Let Y = Φx for x ∈ R

N . Then for any ϵ > 0, and any 
x ∈ RN ,
Equation:

E(∥ Y ∥2
2) = ∥ x ∥2

2

and
Equation: ∣ ∣



P( ∥ Y ∥2
2 − ∥ x ∥2

2 ≥ ϵ∥ x ∥2
2) ≤ 2 exp (−

Mϵ2

κ*
)

with κ* = 2/ (1− log (2)) ≈ 6. 52.

Let φi denote the ith row of Φ. Observe that if Yi denotes the first element of Y ,
then Yi = ⟨φi,x⟩, and thus by Lemma 2 from "Sub-Gaussian random variables", 
Yi ∼ SSub(∥ x ∥2

2/M). Applying [link] to the M-dimensional random vector 

Y , we obtain [link].∣ ∣



Proof of the RIP for sub-Gaussian matrices
In this module we provide a proof that sub-Gaussian matrices satisfy the restricted
isometry property.

We now show how to exploit the concentration of measure properties of sub-
Gaussian distributions to provide a simple proof that sub-Gaussian matrices satisfy
the restricted isometry property (RIP). Specifically, we wish to show that by
constructing an M × N  matrix Φ at random with M  sufficiently large, then with
high probability there exists a δK ∈ (0, 1) such that
Equation:

(1 − δK)∥x∥2
2 ≤ ∥Φx∥2

2 ≤ (1 + δK)∥x∥2
2

holds for all x ∈ ΣK  (where ΣK  denotes the set of all signals x with at most K
nonzeros).

We begin by observing that if all we require is that δ2K > 0, then we may set 
M = 2K and draw a Φ according to a Gaussian distribution, or indeed any
continuous univariate distribution. In this case, with probability 1, any subset of 2K
columns will be linearly independent, and hence all subsets of 2K columns will be
bounded below by 1 − δ2K  where δ2K > 0. However, suppose we wish to know the
constant δ2K . In order to find the value of the constant we must consider all possible
(N

K
)K-dimensional subspaces of RN . From a computational perspective, this is

impossible for any realistic values of N  and K. Moreover, in light of the lower
bounds we described earlier in this course, the actual value of δ2K  in this case is
likely to be very close to 1. Thus, we focus instead on the problem of achieving the
RIP of order 2K for a specified constant δ2K .

To ensure that the matrix will satisfy the RIP, we will impose two conditions on the
random distribution. First, we require that the distribution is sub-Gaussian. In order
to simplify our argument, we will use the simpler results stated in Corollary 2 from
"Concentration of measure for sub-Gaussian random variables", which we briefly
recall.

Suppose that Φ is an M × N  matrix whose entries φij are i.i.d. with 
φij ∼ SSub (1/M). Let Y = Φx for x ∈ RN . Then for any ϵ > 0, and any 
x ∈ R

N ,
Equation:



E(∥ Y ∥2
2) = ∥ x ∥2

2

and
Equation:

P( ∥ Y ∥2
2 − ∥ x ∥2

2 ≥ ϵ∥ x ∥2
2) ≤ 2 exp (−

Mϵ2

κ*
)

with κ* = 2/ (1− log (2)) ≈ 6. 52.

By exploiting this theorem, we assume that the distribution used to construct Φ is
strictly sub-Gaussian. This is done simply to yield more concrete constants. The
argument could easily be modified to establish a similar result for general sub-
Gaussian distributions by instead using Theorem 2 from "Concentration of measure
for sub-Gaussian random variables".

Our second condition is that we require that the distribution yield a matrix that is
approximately norm-preserving, which will require that
Equation:

E (φ2
ij) =

1

M
,

and hence the variance is 1/M .

We shall now show how the concentration of measure inequality in [link] can be
used together with covering arguments to prove the RIP for sub-Gaussian random
matrices. Our general approach will be to construct nets of points in each K-
dimensional subspace, apply [link] to all of these points through a union bound, and
then extend the result from our finite set of points to all possible K-dimensional
signals. Thus, in order to prove the result, we will require the following upper bound
on the number of points required to construct the nets of points. (For an overview of
results similar to [link] and of various related concentration of measure results, we
refer the reader to the excellent introduction of [link].)

Let ϵ ∈ (0, 1) be given. There exists a set of points Q such that ∥ q ∥2 = 1 for all 
q ∈ Q, |Q| ≤ (3/ϵ)K , and for any x ∈ R

K  with ∥ x ∥2 = 1 there is a point q ∈ Q

satisfying ∥ x − q ∥2 ≤ ϵ.∣ ∣



We construct Q in a greedy fashion. We first select an arbitrary point q1 ∈ R
K  with 

∥ q1 ∥2= 1. We then continue adding points to Q so that at step i we add a point 
qi ∈ RK  with ∥ qi ∥2= 1 which satisfies ∥ qi − qj ∥2> ϵ for all j < i. This
continues until we can add no more points (and hence for any x ∈ R

K  with 
∥ x ∥2 = 1 there is a point q ∈ Q satisfying ∥ x − q ∥2 ≤ ϵ.) Now we wish to
bound |Q|. Observe that if we center balls of radius ϵ/2 at each point in Q, then
these balls are disjoint and lie within a ball of radius 1 + ϵ/2. Thus, if BK (r)
denotes a ball of radius r in RK , then
Equation:

|Q| ⋅ Vol(BK (ϵ/2)) ≤ Vol(BK (1 + ϵ/2))

and hence
Equation:

We now turn to our main theorem, which is based on the proof given in [link].

Fix δ ∈ (0, 1). Let Φ be an M × N  random matrix whose entries φij are i.i.d. with 
φij ∼ SSub (1/M). If
Equation:

M ≥ κ1K log (
N

K
),

then Φ satisfies the RIP of order K with the prescribed δ with probability exceeding 
1 − 2e−κ2M , where κ1 > 1 is arbitrary and κ2 = δ2/2κ* − 1/κ1− log (42e/δ).

First note that it is enough to prove [link] in the case ∥ x ∥2 = 1, since Φ is linear.
Next, fix an index set T ⊂ {1, 2, ..., N} with |T | = K, and let XT  denote the K-
dimensional subspace spanned by the columns of ΦT . We choose a finite set of

|Q| ≤
Vol(BK (1 + ϵ/2))

Vol(BK (ϵ/2))

=
(1 + ϵ/2)K

(ϵ/2)K

≤ (3/ϵ)K.



points QT  such that QT ⊆ XT , ∥ q ∥2 = 1 for all q ∈ QT , and for all x ∈ XT  with 
∥ x ∥2 = 1 we have
Equation:

min
q∈QT

∥ x − q ∥2 ≤ δ/14.

From [link], we can choose such a set QT  with QT |≤ (42/δ)K . We then repeat this
process for each possible index set T , and collect all the sets QT  together:
Equation:

Q = ⋃
T :|T |=K

QT .

There are (N
K
) possible index sets T . We can bound this number by

Equation:

(
N

K
) =

N(N − 1)(N − 2) ⋯ (N − K + 1)

K!
≤

N K

K!
≤ (

eN

K
)

K

,

where the last inequality follows since from Sterling's approximation we have 
K! ≥ (K/e)K . Hence |Q| ≤ (42eN/δK)K . Since the entries of Φ are drawn
according to a strictly sub-Gaussian distribution, from [link] we have [link]. We next
use the union bound to apply [link] to this set of points with ϵ = δ/√2, with the
result that, with probability exceeding
Equation:

1 − 2(42eN/δK)K
e−Mδ2/2κ*

,

we have
Equation:

(1 − δ/√2)∥ q ∥2
2 ≤ ∥ Φq ∥2

2 ≤ (1 + δ/√2)∥ q ∥2
2, for all q ∈ Q.

We observe that if M  satisfies [link] then ∣



Equation:

log (
42eN

δK
)

K

≤ K(log (
N

K
)+ log (

42e

δ
)) ≤

M

κ1
+ M log (

42e

δ
)

and thus [link] exceeds 1 − 2e−κ2M  as desired.

We now define A as the smallest number such that
Equation:

∥ Φx ∥2 ≤ √1 + A, for all x ∈ ΣK, ∥ x ∥2 = 1.

Our goal is to show that A ≤ δ. For this, we recall that for any x ∈ ΣK  with 
∥ x ∥2 = 1, we can pick a q ∈ Q such that ∥ x − q ∥2 ≤ δ/14 and such that 
x − q ∈ ΣK  (since if x ∈ XT , we can pick q ∈ QT ⊂ XT  satisfying 
∥ x − q ∥2 ≤ δ/14). In this case we have
Equation:

∥ Φx ∥2 ≤ ∥ Φq ∥2 + ∥ Φ (x − q) ∥2 ≤ √1 + δ/√2 + √1 + A ⋅ δ/14.

Since by definition A is the smallest number for which [link] holds, we obtain 

√1 + A ≤ √1 + δ/√2 + √1 + A ⋅ δ/14. Therefore
Equation:

√1 + A ≤
√1 + δ/√2

1 − δ/14
≤ √1 + δ,

as desired. We have proved the upper inequality in [link]. The lower inequality
follows from this since
Equation:

∥ Φx ∥2 ≥ ∥ Φq ∥2 − ∥ Φ (x − q) ∥2 ≥ √1 − δ/√2 − √1 + δ ⋅ δ/14 ≥ √1 − δ,

which completes the proof.



Above we prove above that the RIP holds with high probability when the matrix Φ
is drawn according to a strictly sub-Gaussian distribution. However, we are often
interested in signals that are sparse or compressible in some orthonormal basis 
Ψ ≠ I, in which case we would like the matrix ΦΨ  to satisfy the RIP. In this setting
it is easy to see that by choosing our net of points in the K-dimensional subspaces
spanned by sets of K columns of Ψ , [link] will establish the RIP for ΦΨ  for Φ again
drawn from a sub-Gaussian distribution. This universality of Φ with respect to the
sparsity-inducing basis is an attractive property that was initially observed for the
Gaussian distribution (based on symmetry arguments), but we can now see is a
property of more general sub-Gaussian distributions. Indeed, it follows that with
high probability such a Φ will simultaneously satisfy the RIP with respect to an
exponential number of fixed bases.



ℓ_1 minimization proof
In this module we prove one of the core lemmas that is used throughout this
course to establish results regarding ℓ_1 minimization.

We now establish one of the core lemmas that we will use throughout this
course. Specifically, [link] is used in establishing the relationship between
the RIP and the NSP as well as establishing results on  minimization in
the context of sparse recovery in both the noise-free and noisy settings. In
order to establish [link], we establish the following preliminary lemmas.

Suppose  are orthogonal vectors. Then
Equation:

We begin by defining the  vector . By applying
standard bounds on  norms (Lemma 1 from "The RIP and the NSP") with 

, we have . From this we obtain
Equation:

Since  and  are orthogonal, , which yields the
desired result.

If  satisfies the restricted isometry property (RIP) of order , then for
any pair of vectors  with disjoint support,
Equation:

Suppose  with disjoint support and that  Then,
 and . Using the RIP we have

Equation:

https://cnx.org/content/col11133@latest


Finally, applying the parallelogram identity
Equation:

establishes the lemma.

Let  be an arbitrary subset of  such that . For any
vector , define  as the index set corresponding to the  largest
entries of  (in absolute value),  as the index set corresponding to the
next  largest entries, and so on. Then
Equation:

We begin by observing that for ,
Equation:

since the  sort  to have decreasing magnitude. Applying standard
bounds on  norms (Lemma 1 from "The RIP and the NSP") we have
Equation:



proving the lemma.

We are now in a position to prove our main result. The key ideas in this
proof follow from [link].

Suppose that  satisfies the RIP of order . Let  be an arbitrary subset
of  such that , and let  be given. Define  as
the index set corresponding to the  entries of  with largest magnitude,
and set . Then
Equation:

where
Equation:

Since , the lower bound on the RIP immediately yields
Equation:

Define  as in [link], then since , we can rewrite
[link] as
Equation:



In order to bound the second term of [link], we use [link], which implies
that
Equation:

for any . Furthermore, [link] yields .
Substituting into [link] we obtain
Equation:

From [link], this reduces to
Equation:

Combining [link] with [link] we obtain
Equation:



which yields the desired result upon rearranging.
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